login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032796
Numbers that are congruent to {1, 2, 3, 5, 6} mod 7.
2
1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 94, 96, 97, 99
OFFSET
1,2
COMMENTS
If k is a term, then k*(k+1)*(k+2)*...*(k+6)/(k+(k+1)+(k+2)+...+(k+6)) is a multiple of k.
FORMULA
Equals natural numbers minus '4, 7, 11, 14, 18, ...' (= previous term +3, +4, +3, +4, ...).
G.f.: x*(x^5 + x^4 + 2*x^3 + x^2 + x + 1)/((1-x)*(1-x^5)).
a(n) = (m^3 - 6*m^2 + 17*m + 6*(7*floor(n/5)-1))/6, where m = n mod 5. - Luce ETIENNE,Oct 17 2018
MATHEMATICA
#+{1, 2, 3, 5, 6}&/@(7*Range[0, 15])//Flatten (* or *) LinearRecurrence[ {1, 0, 0, 0, 1, -1}, {1, 2, 3, 5, 6, 8}, 100] (* Harvey P. Dale, Oct 07 2018 *)
PROG
(Magma) [n: n in [0..120] | n mod 7 in {1, 2, 3, 5, 6}]; // Vincenzo Librandi, Dec 29 2010
CROSSREFS
Cf. A010874.
Sequence in context: A247431 A039033 A047333 * A087057 A184580 A184622
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, May 15 1998
STATUS
approved