login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032795
Positive numbers k such that (k+1)*(k+2)*(k+3)*(k+4)/(k+(k+1)+(k+2)+(k+3)+(k+4)) is an integer.
2
8, 18, 56, 126, 176, 312, 504, 624, 918, 1292, 1512, 2024, 2640, 2990, 3780, 4698, 5208, 6336, 7616, 8316, 9842, 11544, 12464, 14448, 16632, 17802, 20304, 23030, 24480, 27560, 30888, 32648, 36366, 40356, 42456, 46872, 51584, 54054, 59228
OFFSET
1,1
FORMULA
a(n) = A032794(n)/A032793(n).
O.g.f.: 2*x*(4+5*x+19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)^4* (1+x+x^2)^3). [Corrected by Georg Fischer, May 27 2019]
MATHEMATICA
CoefficientList[Series[2*x*(4+5x+19x^2+23x^3+10x^4+11x^5+3x^6)/((1-x)^4*(1+x+x^2)^3), {x, 0, 39}], x] (* Georg Fischer, May 27 2019 *)
PROG
(PARI) Vec(2*x*(4+5*x+19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)^4*(1+x+x^2)^3) + O(x^20)) \\ Felix Fröhlich, May 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) )); // G. C. Greubel, May 29 2019
(Sage) a=(2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) ).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 29 2019
CROSSREFS
Sequence in context: A066721 A079704 A341528 * A120543 A337836 A036747
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
Definition amended and offset changed by Georg Fischer, May 27 2019
STATUS
approved