login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {1, 2, 3, 5, 6} mod 7.
2

%I #28 Sep 08 2022 08:44:51

%S 1,2,3,5,6,8,9,10,12,13,15,16,17,19,20,22,23,24,26,27,29,30,31,33,34,

%T 36,37,38,40,41,43,44,45,47,48,50,51,52,54,55,57,58,59,61,62,64,65,66,

%U 68,69,71,72,73,75,76,78,79,80,82,83,85,86,87,89,90,92,93,94,96,97,99

%N Numbers that are congruent to {1, 2, 3, 5, 6} mod 7.

%C If k is a term, then k*(k+1)*(k+2)*...*(k+6)/(k+(k+1)+(k+2)+...+(k+6)) is a multiple of k.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).

%F Equals natural numbers minus '4, 7, 11, 14, 18, ...' (= previous term +3, +4, +3, +4, ...).

%F G.f.: x*(x^5 + x^4 + 2*x^3 + x^2 + x + 1)/((1-x)*(1-x^5)).

%F a(n) = (m^3 - 6*m^2 + 17*m + 6*(7*floor(n/5)-1))/6, where m = n mod 5. - _Luce ETIENNE_,Oct 17 2018

%t #+{1,2,3,5,6}&/@(7*Range[0,15])//Flatten (* or *) LinearRecurrence[ {1,0,0,0,1,-1},{1,2,3,5,6,8},100] (* _Harvey P. Dale_, Oct 07 2018 *)

%o (Magma) [n: n in [0..120] | n mod 7 in {1, 2, 3, 5, 6}]; // _Vincenzo Librandi_, Dec 29 2010

%Y Cf. A032765..A032798.

%Y Cf. A010874.

%K nonn,easy

%O 1,2

%A _Patrick De Geest_, May 15 1998