

A032358


Number of iterations of phi(n) needed to reach 2.


5



0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 3, 5, 4, 4, 4, 5, 4, 5, 4, 4, 5, 5, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,4


COMMENTS

This sequence is additive (but not completely additive). [Charles R Greathouse IV, Oct 28 2011]
Shapiro asks for a proof that for every n > 1 there is a prime p such that a(p) = n. [Charles R Greathouse IV, Oct 28 2011]
This is A003434(n)1 for n>1.  N. J. A. Sloane, Sep 02 2017


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
P. A. Catlin, Concerning the iterated phifunction, Amer Math. Monthly 77 (1970), pp. 6061.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165204.
Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165204. [Annotated copy with Anumbers]
T. D. Noe, Primes in classes of the iterated totient function, JIS 11 (2008) 08.1.2, sequence C(x).
Harold Shapiro, An arithmetic function arising from the phi function, Amer. Math. Monthly, Vol. 50, No. 1 (1943), 1830.


FORMULA

a(n) = a(phi(n))+1, a(1) = 1.  Vladeta Jovovic, Apr 29 2003
a(n) = A003434(n)  1 = A049108(n)  2.
From Charles R Greathouse IV, Oct 28 2011: (Start)
Shapiro proves that log_3(n/2) <= a(n) < log_2(n) and also
a(mn) = a(m) + a(n) if either m or n is odd and a(mn) = a(m) + a(n) + 1 if m and n are even.
(End)


MAPLE

A032358 := proc(n)
local a, phin ;
if n <=2 then
0;
else
phin := n ;
a := 0 ;
for a from 1 do
phin := numtheory[phi](phin) ;
if phin = 2 then
return a;
end if;
end do:
end if;
end proc:
seq(A032358(n), n=1..30) ; # R. J. Mathar, Aug 28 2015


MATHEMATICA

Table[Length[NestWhileList[EulerPhi[#]&, n, #>2&]]1, {n, 3, 80}] (* Harvey P. Dale, May 01 2011 *)


PROG

(Haskell)
a032358 = length . takeWhile (/= 2) . (iterate a000010)
 Reinhard Zumkeller, Oct 27 2011
(PARI) a(n)=my(t); while(n>2, n=eulerphi(n); t++); t \\ Charles R Greathouse IV, Oct 28 2011


CROSSREFS

Cf. A000010, A003434.
Sequence in context: A237110 A078704 A306468 * A011960 A187035 A008615
Adjacent sequences: A032355 A032356 A032357 * A032359 A032360 A032361


KEYWORD

nice,nonn,easy


AUTHOR

Ursula Gagelmann (gagelmann(AT)altavista.net)


EXTENSIONS

a(2) = 0 added and offset adjusted, suggested by David W. Wilson


STATUS

approved



