The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032242 Number of identity bracelets of n beads of 5 colors. 4
 5, 10, 10, 45, 252, 1120, 5270, 23475, 106950, 483504, 2211650, 10148630, 46911060, 217863040, 1017057256, 4767774375, 22438419120, 105960830300, 501928967930, 2384170903140, 11353241255900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For n>2 also number of asymmetric bracelets with n beads of five colors. - Herbert Kociemba, Nov 29 2016 LINKS Robert Israel, Table of n, a(n) for n = 1..1434 C. G. Bower, Transforms (2) F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only] Index entries for sequences related to bracelets FORMULA "DHK" (bracelet, identity, unlabeled) transform of 5, 0, 0, 0... From Herbert Kociemba, Nov 29 2016: (Start) More generally, gf(k) is the g.f. for the number of asymmetric bracelets with n beads of k colors. gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n - Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End) MAPLE N:= 50: # for a(1)..a(N) G:= add(1/2*numtheory:-mobius(n)*(-log(1-5*x^n)/n - add(binomial(5, i)*x^(n*i)/(1-5*x^(2*n)), i=0..2)), n=1..N): S:= series(G, x, N+1): 5, 10, seq(coeff(S, x, j), j=3..N); # Robert Israel, Jun 24 2019 MATHEMATICA m=5; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d](m^(n/d)/n - If[OddQ[n/d], m^((n/d+1)/2), ((m+1)m^(n/(2d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *) mx=40; gf[x_, k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/(1-k x^(2n)))/2, {n, mx}]; ReplacePart[Rest[CoefficientList[Series[gf[x, 5], {x, 0, mx}], x]], {1->5, 2->10}] (* Herbert Kociemba, Nov 29 2016 *) PROG (PARI) a(n)={if(n<3, binomial(5, n), sumdiv(n, d, moebius(n/d)*(5^d/n - if(d%2, 5^((d+1)/2), 3*5^(d/2))))/2)} \\ Andrew Howroyd, Sep 12 2019 CROSSREFS Column k=5 of A309528 for n >= 3. Sequence in context: A201033 A242894 A256641 * A208541 A324593 A107975 Adjacent sequences: A032239 A032240 A032241 * A032243 A032244 A032245 KEYWORD nonn AUTHOR Christian G. Bower STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 03:12 EDT 2024. Contains 373402 sequences. (Running on oeis4.)