login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031878 Maximal number of edges in Hamiltonian path in complete graph on n nodes. 3
0, 1, 3, 5, 10, 13, 21, 25, 36, 41, 55, 61, 78, 85, 105, 113, 136, 145, 171, 181, 210, 221, 253, 265, 300, 313, 351, 365, 406, 421, 465, 481, 528, 545, 595, 613, 666, 685, 741, 761, 820, 841, 903, 925, 990, 1013, 1081, 1105, 1176, 1201, 1275, 1301, 1378 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Given a regular polygon with n sides, a(n) is the number of circles that have an edge of the polygon as a diameter (5 for n=4, 10 for n=5, 13 for n=6, ...). - Ahmet Arduç, Jan 28 2017
Quasipolynomial of order 2. [Charles R Greathouse IV, Dec 07 2011]
LINKS
FORMULA
a(n) = C(n, 2) if n odd, a(n) = C(n, 2)-n/2+1 if n even.
G.f.: x^2*(1+2*x+x^3)/((1-x)*(1-x^2)).
a(n) = ( n*n +n -(n-1)*(n mod 2) )/2. [Frank Ellermann]
EXAMPLE
E.g. for n=4 [1:2][2:3][3:1][1:4][4:2], so a(4) = 5.
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 5, 10}, 60] (* Harvey P. Dale, Mar 14 2015 *)
CoefficientList[ Series[-x (x^3 + 2x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 52}], x] (* Robert G. Wilson v, Jul 30 2018 *)
PROG
(PARI) a(n)=if(n%2, n^2-n, n^2-2*n+2)/2 \\ Charles R Greathouse IV, Dec 07 2011
CROSSREFS
Cf. A031940.
Sequence in context: A309270 A165718 A340528 * A345890 A265282 A160792
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 17:01 EDT 2024. Contains 371765 sequences. (Running on oeis4.)