|
|
A345890
|
|
a(n) = n + (n - 1) * (n - pi(n)).
|
|
1
|
|
|
1, 3, 5, 10, 13, 21, 25, 36, 49, 64, 71, 89, 97, 118, 141, 166, 177, 205, 217, 248, 281, 316, 331, 369, 409, 451, 495, 541, 561, 610, 631, 683, 737, 793, 851, 911, 937, 1000, 1065, 1132, 1161, 1231, 1261, 1334, 1409, 1486, 1519, 1599, 1681, 1765, 1851, 1939, 1977, 2068
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For all 1 <= k <= n, add 1 if k is prime, otherwise add n. For example, when n = 7, there are 4 numbers less than or equal to 7 that are prime and 3 that are not. Then a(7) = 1*4 + 7*3 = 25.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n} n^c(n), where c(n) is the characteristic function of nonprimes (A005171).
|
|
MATHEMATICA
|
Table[n + (n - 1)*(n - PrimePi[n]), {n, 50}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|