|
|
A345888
|
|
a(n) = n + (n - 1) * pi(n).
|
|
1
|
|
|
1, 3, 7, 10, 17, 21, 31, 36, 41, 46, 61, 67, 85, 92, 99, 106, 129, 137, 163, 172, 181, 190, 221, 231, 241, 251, 261, 271, 309, 320, 361, 373, 385, 397, 409, 421, 469, 482, 495, 508, 561, 575, 631, 646, 661, 676, 737, 753, 769, 785, 801, 817, 885, 902, 919, 936, 953, 970
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For all 1 <= k <= n, add n if k is prime, otherwise add 1. For example, when n = 7, there are 4 primes less than or equal to 7 and 3 that are not. Then we have a(7) = 4*7 + 3 = 31.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n} n^c(k), where c(n) is the prime characteristic (A010051).
|
|
MATHEMATICA
|
Table[n + (n - 1)*PrimePi[n], {n, 50}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|