The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A345885 G.f. A(x) satisfies: A(x) = x * exp(3 * Sum_{k>=1} (-1)^k * A(x^k) / k). 1
 1, -3, 15, -82, 486, -3090, 20497, -140010, 979131, -6976603, 50461716, -369533691, 2734423934, -20414010219, 153571115619, -1163003999342, 8859172575069, -67835214598017, 521824159637718, -4030828937892966, 31252886542570119, -243142210911325273, 1897466281615297698 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA G.f.: x / Product_{n>=1} (1 + x^n)^(3*a(n)). a(n+1) = (3/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d) * d * a(d) ) * a(n-k+1). MAPLE a:= proc(n) option remember; `if`(n=1, 1, 3*add(a(n-k)*add(d*a(d)       *(-1)^(k/d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))     end: seq(a(n), n=1..23); # Alois P. Heinz, Jun 28 2021 MATHEMATICA nmax = 23; A[_] = 0; Do[A[x_] = x Exp[3 Sum[(-1)^k A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest a[1] = 1; a[n_] := a[n] = (3/(n - 1)) Sum[Sum[(-1)^(k/d) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 23}] CROSSREFS Cf. A006964, A049075, A052757, A345884. Sequence in context: A015680 A084208 A059271 * A014276 A006964 A203507 Adjacent sequences:  A345882 A345883 A345884 * A345886 A345887 A345888 KEYWORD sign AUTHOR Ilya Gutkovskiy, Jun 28 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 20:43 EST 2022. Contains 350472 sequences. (Running on oeis4.)