This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A031366 Expansion of Dirichlet series related to icosians. 0
 1, 0, 0, 25, 36, 0, 0, 0, 100, 0, 288, 0, 0, 0, 0, 440, 0, 0, 800, 900, 0, 0, 0, 0, 960, 0, 0, 0, 1800, 0, 2048, 0, 0, 0, 0, 2500, 0, 0, 0, 0, 3528, 0, 0, 7200, 3600, 0, 0, 0, 2550, 0, 0, 0, 0, 0, 10368, 0, 0, 0, 7200, 0, 7688, 0, 0, 7330, 0, 0, 0, 0, 0, 0, 10368, 0, 0, 0, 0, 20000, 0, 0, 12800, 15840, 8362, 0, 0, 0, 0, 0, 0, 0, 16200, 0, 0, 0, 0, 0, 28800, 0, 0, 0, 28800, 23899 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS This sequence may be multiplicative. - Mitch Harris, Apr 19 2005 LINKS M. Baake, Solution of the coincidence problem in dimensions d <= 4, in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.; arXiv:math/0605222 [math.MG], 2006. MAPLE read("transforms") : # expansion of 1/(1-5^(-s)) in (5.10) L1 := [1, seq(0, i=2..200)] : for k from 1 do     if 5^k <= nops(L1) then         L1 := subsop(5^k=1, L1) ;     else         break ;     end if; end do: # multiplication with 1/(1-p^(-2s)) in (5.10) for i from 1 do     p := ithprime(i) ;     if modp(p, 5) = 2 or modp(p, 5)=3 then         Laux := [1, seq(0, i=2..200)] :         for k from 1 do             if p^(2*k) <= nops(Laux) then                 Laux := subsop(p^(2*k)=1, Laux) ;             else                 break ;             end if;         end do:         L1 := DIRICHLET(L1, Laux) ;     end if;     if p > nops(L1) then         break;     end if; end do: # multiplication with 1/(1-p^(-s))^2 in (5.10) for i from 1 do     p := ithprime(i) ;     if modp(p, 5) = 1 or modp(p, 5)=4 then         Laux := [1, seq(0, i=2..200)] :         for k from 1 do             if p^k <= nops(Laux) then                 Laux := subsop(p^k=k+1, Laux) ;             else                 break ;             end if;         end do:         L1 := DIRICHLET(L1, Laux) ;     end if;     if p > nops(L1) then         break;     end if; end do: # this is now Zeta_L(s), seems to be A035187 # print(L1) ; # generate Zeta_L(s-1) L1shft := [seq(op(i, L1)*i, i=1..nops(L1))] ; # generate 1/Zeta_L(s) L1x := add(op(i, L1)*x^(i-1), i=1..nops(L1)) : taylor(1/L1x, x=0, nops(L1)) : L1i := gfun[seriestolist](%) ; # generate 1/Zeta_L(2s) L1i2 := [1, seq(0, i=2..nops(L1))] ; for k from 2 to nops(L1i) do     if k^2 < nops(L1i2) then         L1i2 := subsop(k^2=op(k, L1i), L1i2) ;     else         break ;     end if; end do: # generate Zeta_L(s)*Zeta_L(s-1) DIRICHLET(L1, L1shft) ; # generate Zeta_L(s)*Zeta_L(s-1)/Zeta_L(2s) = Phi(s) Phis := DIRICHLET(%, L1i2) ; # generate Phis(s-1) Phishif := [seq(op(i, Phis)*i, i=1..nops(Phis))] ; DIRICHLET(Phis, Phishif) ; CROSSREFS Sequence in context: A153446 A039457 A243749 * A068165 A086935 A077689 Adjacent sequences:  A031363 A031364 A031365 * A031367 A031368 A031369 KEYWORD nonn AUTHOR EXTENSIONS Terms beyond a(36) from R. J. Mathar, Mar 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 16 04:26 EDT 2019. Contains 325064 sequences. (Running on oeis4.)