login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031366 Number of symmetrically inequivalent coincidence rotations of icosian ring of index n. 1

%I #30 Feb 16 2021 13:13:15

%S 1,0,0,25,36,0,0,0,100,0,288,0,0,0,0,440,0,0,800,900,0,0,0,0,960,0,0,

%T 0,1800,0,2048,0,0,0,0,2500,0,0,0,0,3528,0,0,7200,3600,0,0,0,2550,0,0,

%U 0,0,0,10368,0,0,0,7200,0,7688,0,0,7330,0,0,0,0,0,0,10368,0,0,0,0,20000,0,0,12800,15840,8362,0,0,0,0,0,0,0,16200,0,0,0,0,0,28800,0,0,0,28800,23899

%N Number of symmetrically inequivalent coincidence rotations of icosian ring of index n.

%C The overall number of coincidence rotations is 7200 times this value. Some symmetrically distinct rotations generate the same coincidence site modules, hence a(n) >= A331143(n). - _Andrey Zabolotskiy_, Feb 16 2021

%H M. Baake, <a href="https://arxiv.org/abs/math/0605222">Solution of the coincidence problem in dimensions d <= 4</a>, in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.; arXiv:math/0605222 [math.MG], 2006.

%H Michael Baake and Peter Zeiner, <a href="https://doi.org/10.1080/14786430701846206">Coincidences in 4 dimensions</a>, Phil. Mag. 88 (2008), 2025-2032; arXiv:<a href="https://arxiv.org/abs/0712.0363">0712.0363</a> [math.MG]. See Section 4. Caution: there is a typo in a(19).

%F See Baake (1997) for the Dirichlet g.f.

%p read("transforms") :

%p # expansion of 1/(1-5^(-s)) in (5.10)

%p L1 := [1,seq(0,i=2..200)] :

%p for k from 1 do

%p if 5^k <= nops(L1) then

%p L1 := subsop(5^k=1,L1) ;

%p else

%p break ;

%p end if;

%p end do:

%p # multiplication with 1/(1-p^(-2s)) in (5.10)

%p for i from 1 do

%p p := ithprime(i) ;

%p if modp(p,5) = 2 or modp(p,5)=3 then

%p Laux := [1,seq(0,i=2..200)] :

%p for k from 1 do

%p if p^(2*k) <= nops(Laux) then

%p Laux := subsop(p^(2*k)=1,Laux) ;

%p else

%p break ;

%p end if;

%p end do:

%p L1 := DIRICHLET(L1,Laux) ;

%p end if;

%p if p > nops(L1) then

%p break;

%p end if;

%p end do:

%p # multiplication with 1/(1-p^(-s))^2 in (5.10)

%p for i from 1 do

%p p := ithprime(i) ;

%p if modp(p,5) = 1 or modp(p,5)=4 then

%p Laux := [1,seq(0,i=2..200)] :

%p for k from 1 do

%p if p^k <= nops(Laux) then

%p Laux := subsop(p^k=k+1,Laux) ;

%p else

%p break ;

%p end if;

%p end do:

%p L1 := DIRICHLET(L1,Laux) ;

%p end if;

%p if p > nops(L1) then

%p break;

%p end if;

%p end do:

%p # this is now Zeta_L(s), seems to be A035187

%p # print(L1) ;

%p # generate Zeta_L(s-1)

%p L1shft := [seq(op(i,L1)*i,i=1..nops(L1))] ;

%p # generate 1/Zeta_L(s)

%p L1x := add(op(i,L1)*x^(i-1),i=1..nops(L1)) :

%p taylor(1/L1x,x=0,nops(L1)) :

%p L1i := gfun[seriestolist](%) ;

%p # generate 1/Zeta_L(2s)

%p L1i2 := [1,seq(0,i=2..nops(L1))] ;

%p for k from 2 to nops(L1i) do

%p if k^2 < nops(L1i2) then

%p L1i2 := subsop(k^2=op(k,L1i),L1i2) ;

%p else

%p break ;

%p end if;

%p end do:

%p # generate Zeta_L(s)*Zeta_L(s-1)

%p DIRICHLET(L1,L1shft) ;

%p # generate Zeta_L(s)*Zeta_L(s-1)/Zeta_L(2s) = Phi(s)

%p Phis := DIRICHLET(%,L1i2) ;

%p # generate Phis(s-1)

%p Phishif := [seq(op(i,Phis)*i,i=1..nops(Phis))] ;

%p DIRICHLET(Phis,Phishif) ;

%Y Cf. A331143.

%K nonn,mult

%O 1,4

%A _N. J. A. Sloane_

%E Terms beyond a(36) from _R. J. Mathar_, Mar 04 2018

%E New name from _Andrey Zabolotskiy_, Feb 16 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 03:33 EDT 2024. Contains 371767 sequences. (Running on oeis4.)