OFFSET
1,4
LINKS
Michael Baake and Peter Zeiner, Coincidences in 4 dimensions, Phil. Mag. 88 (2008), 2025-2032; arXiv:0712.0363 [math.MG]. See Section 4. Caution: there is a typo in a(19) here and in other papers.
Michael Baake and Peter Zeiner, Geometric Enumeration Problems for Lattices and Embedded Z-Modules, in: Aperiodic Order, vol. 2: Crystallography and Almost Periodicity, eds. M. Baake and U. Grimm, Cambridge University Press, Cambridge (2017), pp. 73-172; arXiv:1709.07317 [math.MG], 2017. See Theorem 3.11.12 (or Theorem 11.12 in the arXiv version).
Peter Zeiner, Coincidence Site Lattices and Coincidence Site Modules, 2015. See p. 83.
FORMULA
See Zeiner (2015) for the formula and the Dirichlet g.f. (but beware of the typo in the 19th term).
MATHEMATICA
h[x_, 0] := 1;
h[x_, r_] := (x^(2 r + 1) + x^(2 r - 2) - 2 x^Quotient[r - 1, 2] If[EvenQ[r], (1 + x^2)/(1 + x), 1]) (x + 1)^2/(x^3 - 1);
apr[5, r_] := h[5, r];
apr[p_?(Abs@Mod[#, 5, -1] == 1 &), r_] := Sum[h[p, r - s] h[p, s], {s, 0, r}];
apr[p_, r_] := If[OddQ[r], 0, h[p^2, r/2]];
a[1] = 1;
a[n_] := Product[apr @@ pr, {pr, FactorInteger[n]}];
Table[a[n], {n, 100}]
(* Andrey Zabolotskiy, Feb 16 2021 *)
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Jan 12 2020
EXTENSIONS
New name, a(19) corrected, a(29) and beyond added by Andrey Zabolotskiy, Feb 16 2021
STATUS
approved