login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030700
Decimal expansion of 3^n contains no zeros (probably finite).
36
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 19, 23, 24, 26, 27, 28, 31, 34, 68
OFFSET
1,3
COMMENTS
See A007377 for the analog for 2^n (final term seems to be 86), A008839 for 5^n (final term seems to be 58), and others listed in cross-references. - M. F. Hasler, Mar 07 2014
See A238939(n) = 3^a(n) for the actual powers. - M. F. Hasler, Mar 08 2014
LINKS
M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
W. Schneider, NoZeros: Powers n^k without Digit Zero [Cached copy]
Eric Weisstein's World of Mathematics, Zero
EXAMPLE
Here is 3^68, conjecturally the largest power of 3 that does not contain a zero:
278128389443693511257285776231761. - N. J. A. Sloane, Feb 10 2023
MATHEMATICA
Do[If[Union[RealDigits[3^n][[1]]][[1]]!=0, Print[n]], {n, 0, 10000}] (* Vincenzo Librandi, Oct 19 2012 *)
Select[Range[0, 70], DigitCount[3^#, 10, 0]==0&] (* Harvey P. Dale, Feb 06 2019 *)
PROG
(Magma) [n: n in [0..500] | not 0 in Intseq(3^n) ]; // Vincenzo Librandi, Oct 19 2012
(PARI) is_A030700(n)=vecmin(digits(3^n)) \\ M. F. Hasler, Mar 07 2014
(PARI) A030700=select( is_A030700, [0..199]) \\ M. F. Hasler, Jun 14 2018
CROSSREFS
For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700 (this), A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.
Sequence in context: A325097 A333126 A330697 * A305933 A105208 A074779
KEYWORD
nonn,base
EXTENSIONS
Initial term 0 added by Vincenzo Librandi, Oct 19 2012
STATUS
approved