login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030699
Maximal value of Q(n,m) (number of partitions of n into m distinct summands) for given n.
6
1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009
OFFSET
1,5
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115.
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. Comtet, S. N. Majumdar and S. Ouvry, Integer Partitions and Exclusion Statistics, arXiv:0705.2640 [cond-mat.stat-mech], 2007
FORMULA
a(n) = max {Q(n,k), k=1..m}, where m = A003056(n) and Q(n,k) is defined by A008289. - Gheorghe Coserea, Nov 04 2015
a(n) ~ K * exp(Pi*sqrt(n/3)) / n, where K = Pi / (4*sqrt(6*Pi^2 - 72*log(2)^2)) = 0.158271121170... (see A260061). - Gheorghe Coserea, Nov 08 2015
MATHEMATICA
Max /@ Table[Length@ Select[IntegerPartitions[n, m], Sort@ DeleteDuplicates@ # == Range@ m &], {n, 32}, {m, 0, n}] (* Michael De Vlieger, Nov 06 2015 *)
PROG
(PARI)
Q(N) = {
my(q = vector(N)); q[1] = [1, 0, 0, 0];
for (n = 2, N,
my(m = (sqrtint(8*n+1) - 1)\2);
q[n] = vector((1 + (m>>2)) << 2); q[n][1] = 1;
for (k = 2, m, q[n][k] = q[n-k][k] + q[n-k][k-1]));
return(q);
};
apply(vecmax, Q(59)) \\ Gheorghe Coserea, Nov 04 2015
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from David Wasserman, Jan 23 2002
STATUS
approved