The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A358151 Earliest infinite sequence of distinct integers on a square spiral such that every number equals the sum of its eight adjacent neighbors. See the Comments. 4
 0, 1, -1, 2, -2, 3, -3, 4, -4, -5, -6, 11, 5, 6, -20, 15, 8, 7, -17, 12, 9, 18, -32, 21, 13, -8, 16, -38, 14, 30, -7, -11, -37, 57, -60, 23, -9, 10, 24, -34, -24, 60, -10, -13, -31, 72, -109, 82, 20, -12, -14, -108, 182, -142, -28, 188, -15, -16, -160, 168, -82, 67, -128, 120, -21, 22, -43, -22 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS We define earliest as the number with the smallest magnitude, and where a positive number is considered earlier than its negative value. Numerous conditions must be met when choosing the next earliest available number so the sequence is infinite. The main consideration is that the first two numbers chosen in any new row or column totally determine the remaining values in that row/column. Usually these two terms will be the earliest unused numbers, although sometimes that is not possible. See the examples below and the attached text file explaining the selection criteria. Once these two numbers are chosen the other values tend to be larger in magnitude at the start and end of the row/column than in its middle, although all of these values are generally much much larger than the initial two terms. See the first linked image. The values that are positive and negative make a pattern around the spiral axes; see the second linked image. There is no occurrence in the first 250000 terms where a positive number is surrounded by eight negative numbers, or vice versa. It is unknown is this can occur. The sequence is conjectured to be a permutation of the integers. The values grow rapidly in size, e.g., in the first 1000 terms the largest magnitude number is a(899) = 3585008350, while the largest magnitude number in the first 100000 terms is a(99854) = -128...904, a number containing 103 digits. The author thanks Eric Angelini whose sequence A358254 was the inspiration for this one. LINKS Scott R. Shannon, Table of n, a(n) for n = 0..10000 Scott R. Shannon, Image of log_10 of the absolute value of the first 100000 terms on the spiral. The values are scaled across the spectrum from red to violet to show their relative magnitude. Scott R. Shannon, Image showing the sign of the first 100000 terms on the spiral. White is positive, black is negative. Scott R. Shannon, Image of log_10 of the positive value of the first 500000 terms. Scott R. Shannon, 31 by 31 inner block of the spiral. Scott R. Shannon, Explanation of how the sequence terms are selected. EXAMPLE The square spiral begins: . . . 8...15...-20...6....5 30 | | | 7 -2....2...-1 11 14 | | | | | -17 3 0....1 -6 -38 | | | | 12 -3....4...-4...-5 16 | | 9...18...-32...21...13...-8 . . See the attached text file for a larger 31 by 31 example. a(0) = 0. The earliest available integer. a(1)..a(8) = 1,-1,2,-2,3,-3,4,-4. These are the earliest available eight numbers that sum to a(0) = 0 as required. a(9) = -5. Despite this being a term where a seemingly free choice can be made, the earliest available number, 5, cannot be chosen; it is not immediately obvious as to why 5 fails since the addition of this number does not complete a new 3 by 3 block of numbers. See the attached text file for an explanation. a(10) = -6. Given that a(9) = -5 the next number cannot be either 5 or 6 since those choices would force a(11) to equal 0 or -1 so that the eight numbers surrounding a(1) = 1 would sum to 1. But both 0 and -1 have already appeared thus a(10) cannot be 5 or 6. a(11) = 11. Given a(9) = -5 and a(10) = -6, the seven terms around a(1) = 1 currently sum to 2 - 1 + 0 + 4 - 4 - 5 - 6 = -10, thus a(11) = 11 so that 11 - 10 = 1. a(14) = -20. The earliest available numbers, 5 and 6, were able to be chosen for the start of this row, so the current sum of numbers around a(2) = -1 is 6 + 5 + 2 + 11 + 0 + 1 - 6 = 19. Therefore a(14) = -20 so that -20 + 19 = -1. CROSSREFS Cf. A358254, A354441, A354435, A358048, A344659. Sequence in context: A029027 A035448 A060969 * A152162 A030699 A083802 Adjacent sequences: A358148 A358149 A358150 * A358152 A358153 A358154 KEYWORD sign AUTHOR Scott R. Shannon, Nov 01 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 14:02 EDT 2023. Contains 363165 sequences. (Running on oeis4.)