The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030532 Number of polyhexes of class PF2 with symmetry point group C_s. 10
 0, 1, 6, 35, 168, 807, 3738, 17326, 79909, 369330, 1709087, 7929590, 36880231, 171981241, 804008476, 3767969067, 17699758030, 83328230588, 393123455667, 1858351021018, 8801159427825, 41756067216508, 198437454009869, 944521139813575, 4502419756667924 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,3 COMMENTS See reference for precise definition. Cyvin has incorrect a(13)=369366 and a(14)=1709123 in Table III due to using incorrect values for A026298(13) and A026298(14) in Table II. LINKS S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540. Sean A. Irvine, Java program (github) FORMULA a(n+4) = N(n+3) - 6*N(n+2) - M'(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-e(n)*M(n/2)+L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), M'(n)=A039919(n), L(n)=A039658(n), L'(n)=A039660(n), e(n)=1 if n is even and 0 if n is odd. - Sean A. Irvine, Apr 03 2020 PROG (PARI) L(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*x^2*(1-x)), n); \\ A039658 Lp(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660 M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879 N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212 Mp(n) = N(n) - sum(j=0, n-1, N(j)); \\ A039919 b(n) = N(n+3) - 6*N(n+2) - Mp(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-if (!(n%2), M(n/2))+Lp(n))/2; a(n) = if (n<=4, 0, b(n-4)); \\ Michel Marcus, Apr 05 2020 CROSSREFS Cf. A026106, A026118, A026298, A030519, A030520, A030525, A030529, A030532, A030534. Sequence in context: A203288 A026957 A026987 * A333800 A026997 A014337 Adjacent sequences: A030529 A030530 A030531 * A030533 A030534 A030535 KEYWORD nonn AUTHOR EXTENSIONS a(13) and a(14) corrected, title improved, and more terms from Sean A. Irvine, Apr 03 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 18:26 EST 2023. Contains 359905 sequences. (Running on oeis4.)