

A029908


Starting with n, repeatedly sum prime factors (with multiplicity) until reaching 0 or a fixed point. Then a(n) is the fixed point (or 0).


13



0, 2, 3, 4, 5, 5, 7, 5, 5, 7, 11, 7, 13, 5, 5, 5, 17, 5, 19, 5, 7, 13, 23, 5, 7, 5, 5, 11, 29, 7, 31, 7, 5, 19, 7, 7, 37, 7, 5, 11, 41, 7, 43, 5, 11, 7, 47, 11, 5, 7, 5, 17, 53, 11, 5, 13, 13, 31, 59, 7, 61, 5, 13, 7, 5, 5, 67, 7, 5, 5, 71, 7, 73, 5, 13, 23, 5, 5, 79, 13, 7, 43, 83, 5, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

That is, the sopfr function (see A001414) applied repeatedly until reaching 0 or a fixed point.
For n > 1, the sequence reaches a fixed point which is either 4 or a prime.
Because sopfr(n) <= n (with equality at 4 and the primes), the first appearance of all primes is in the natural order: 2,3,5,7,11,... .  Zak Seidov, Mar 14 2011
The terms 0, 2, 3 and 4 occur exactly once, because no number > 5 can have factors that sum to be < 5, and therefore can never enter a trajectory that will drop below 5.  Christian N. K. Anderson, May 19 2013
For all primes p, where p is contained in A001359, then a(p^2) = p + 2. (A006512). Proof: p^2 has prime factors (p, p). This sums to 2p. 2p has factors (2, p). This sums to p + 2. Since p was the lesser of a twin prime, then p + 2 is the greater of a twin prime.  Ryan Bresler, Nov 04 2021


LINKS



EXAMPLE

20 > 2+2+5 = 9 > 3+3 = 6 > 2+3 = 5, so a(20)=5.


MAPLE

f:= proc(n) option remember;
if isprime(n) then n
else `procname`(add(x[1]*x[2], x = ifactors(n)[2]))
fi
end proc:
f(1):= 0: f(4):= 4:


MATHEMATICA

ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] slog[x_] := slog[x_] := Apply[Plus, ba[x]*ep[x]] Table[FixedPoint[slog, w], {w, 1, 128}]
f[n_] := Plus @@ Flatten[ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n]; Array[ FixedPoint[f, # ] &, 87] (* Robert G. Wilson v, Jan 18 2006 *)
fz[n_]:=Plus@@(#[[1]]*#[[2]]&/@FactorInteger@n); Array[FixedPoint[fz, #]&, 1000] (* Zak Seidov, Mar 14 2011 *)


PROG

(Python)
from sympy import factorint
def a(n, pn):
if n == pn:
return n
else:
return a(sum(p*e for p, e in factorint(n).items()), n)
print([a(i, None) for i in range(1, 100)]) # Gleb Ivanov, Nov 05 2021


CROSSREFS

Cf. A001414 (sum of prime factors of n).


KEYWORD

nonn


AUTHOR



STATUS

approved



