login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028480 Number of perfect matchings in graph C_{9} X P_{2n}. 1
1, 76, 11989, 2091817, 372713728, 66750320449, 11970180565381, 2147314732677364, 385238046548443177, 69115057977256578649, 12399917664600455876068, 2224670061782262303745381, 399128369515444836686385361, 71607684753022827432994707712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..400

Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.

FORMULA

G.f.: (x^15 -189*x^14+9585*x^13 -194987*x^12 +1937034*x^11 -10357902*x^10 +31195513*x^9 -53951967*x^8 +53951967*x^7 -31195513*x^6 +10357902*x^5 -1937034*x^4 +194987*x^3 -9585*x^2 +189*x -1) / ( -x^16 +265*x^15 -17736*x^14 +457655*x^13 -5699687*x^12 +38357160*x^11 -146975161*x^10 +327381265*x^9 -427427424*x^8 +327381265*x^7 -146975161*x^6 +38357160*x^5 -5699687*x^4 +457655*x^3 -17736*x^2 +265*x -1). - Alois P. Heinz, Dec 10 2013

CROSSREFS

Sequence in context: A093238 A185984 A289227 * A229413 A111682 A271242

Adjacent sequences:  A028477 A028478 A028479 * A028481 A028482 A028483

KEYWORD

nonn,easy

AUTHOR

Per H. Lundow

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)