login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028480
Number of perfect matchings in graph C_{9} X P_{2n}.
3
1, 76, 11989, 2091817, 372713728, 66750320449, 11970180565381, 2147314732677364, 385238046548443177, 69115057977256578649, 12399917664600455876068, 2224670061782262303745381, 399128369515444836686385361, 71607684753022827432994707712
OFFSET
0,2
REFERENCES
Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.
LINKS
FORMULA
G.f.: (x^15 -189*x^14+9585*x^13 -194987*x^12 +1937034*x^11 -10357902*x^10 +31195513*x^9 -53951967*x^8 +53951967*x^7 -31195513*x^6 +10357902*x^5 -1937034*x^4 +194987*x^3 -9585*x^2 +189*x -1) / ( -x^16 +265*x^15 -17736*x^14 +457655*x^13 -5699687*x^12 +38357160*x^11 -146975161*x^10 +327381265*x^9 -427427424*x^8 +327381265*x^7 -146975161*x^6 +38357160*x^5 -5699687*x^4 +457655*x^3 -17736*x^2 +265*x -1). - Alois P. Heinz, Dec 10 2013
a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{9}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 17 2020
PROG
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 1, I*x/2)))} \\ Seiichi Manyama, Apr 17 2020
CROSSREFS
Sequence in context: A093238 A185984 A289227 * A229413 A111682 A271242
KEYWORD
nonn,easy
AUTHOR
STATUS
approved