login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028480 Number of perfect matchings in graph C_{9} X P_{2n}. 3
1, 76, 11989, 2091817, 372713728, 66750320449, 11970180565381, 2147314732677364, 385238046548443177, 69115057977256578649, 12399917664600455876068, 2224670061782262303745381, 399128369515444836686385361, 71607684753022827432994707712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..400

Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.

FORMULA

G.f.: (x^15 -189*x^14+9585*x^13 -194987*x^12 +1937034*x^11 -10357902*x^10 +31195513*x^9 -53951967*x^8 +53951967*x^7 -31195513*x^6 +10357902*x^5 -1937034*x^4 +194987*x^3 -9585*x^2 +189*x -1) / ( -x^16 +265*x^15 -17736*x^14 +457655*x^13 -5699687*x^12 +38357160*x^11 -146975161*x^10 +327381265*x^9 -427427424*x^8 +327381265*x^7 -146975161*x^6 +38357160*x^5 -5699687*x^4 +457655*x^3 -17736*x^2 +265*x -1). - Alois P. Heinz, Dec 10 2013

a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{9}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 17 2020

PROG

(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 1, I*x/2)))} \\ Seiichi Manyama, Apr 17 2020

CROSSREFS

Sequence in context: A093238 A185984 A289227 * A229413 A111682 A271242

Adjacent sequences:  A028477 A028478 A028479 * A028481 A028482 A028483

KEYWORD

nonn,easy

AUTHOR

Per H. Lundow

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 10:24 EDT 2021. Contains 347642 sequences. (Running on oeis4.)