login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A028482
Number of perfect matchings in graph C_{11} X P_{2n}.
3
1, 199, 97021, 53924597, 30946370401, 17931360207872, 10421993545062683, 6063482153051471479, 3528867741726076542167, 2053975467997173931810469, 1195557391003219846631664779, 695906086927354589354168761123, 405072252620898699232642344701021
OFFSET
0,2
REFERENCES
Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.
LINKS
Alois P. Heinz, G.f. for A028482
FORMULA
G.f.: see link above.
a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{11}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 17 2020
PROG
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(11, 1, I*x/2)))} \\ Seiichi Manyama, Apr 17 2020
CROSSREFS
Sequence in context: A305413 A181007 A155508 * A111472 A033523 A189580
KEYWORD
nonn
AUTHOR
STATUS
approved