login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of perfect matchings in graph C_{9} X P_{2n}.
3

%I #16 Apr 17 2020 23:04:48

%S 1,76,11989,2091817,372713728,66750320449,11970180565381,

%T 2147314732677364,385238046548443177,69115057977256578649,

%U 12399917664600455876068,2224670061782262303745381,399128369515444836686385361,71607684753022827432994707712

%N Number of perfect matchings in graph C_{9} X P_{2n}.

%D Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.

%H Alois P. Heinz, <a href="/A028480/b028480.txt">Table of n, a(n) for n = 0..400</a>

%H Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz">Enumeration of matchings in polygraphs</a>, 1998.

%F G.f.: (x^15 -189*x^14+9585*x^13 -194987*x^12 +1937034*x^11 -10357902*x^10 +31195513*x^9 -53951967*x^8 +53951967*x^7 -31195513*x^6 +10357902*x^5 -1937034*x^4 +194987*x^3 -9585*x^2 +189*x -1) / ( -x^16 +265*x^15 -17736*x^14 +457655*x^13 -5699687*x^12 +38357160*x^11 -146975161*x^10 +327381265*x^9 -427427424*x^8 +327381265*x^7 -146975161*x^6 +38357160*x^5 -5699687*x^4 +457655*x^3 -17736*x^2 +265*x -1). - _Alois P. Heinz_, Dec 10 2013

%F a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{9}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - _Seiichi Manyama_, Apr 17 2020

%o (PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 1, I*x/2)))} \\ _Seiichi Manyama_, Apr 17 2020

%K nonn,easy

%O 0,2

%A _Per H. Lundow_