The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289227 Number of ways to select 6 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle. 7
 0, 76, 10956, 371016, 4988324, 39302784, 218633416, 952344088, 3460482612, 10932805668, 30901640212, 79762409256, 190898410020, 428596770008, 910935932112, 1846146025240, 3588666200596, 6723331905852, 12188915557404, 21455723224456, 36776237135268, 61533021405936 (list; graph; refs; listen; history; text; internal format)
 OFFSET 5,2 COMMENTS Rotations and reflections of a selection are regarded as different. LINKS Heinrich Ludwig, Table of n, a(n) for n = 5..100 Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1). FORMULA a(n) = (n^12 -12*n^11 -129*n^10 +2090*n^9 +3985*n^8 -142832*n^7 +152809*n^6 +4752598*n^5 -12392266*n^4 -76011076*n^3 +274393360*n^2 +455879232*n -2015187840)/720 for n>=6. G.f.: 4*x^6*(19 + 2492*x + 58629*x^2 + 249487*x^3 + 78686*x^4 - 397088*x^5 + 93163*x^6 + 160960*x^7 - 77014*x^8 - 10728*x^9 + 4312*x^10 + 5013*x^11 - 1611*x^12) / (1 - x)^13. - Colin Barker, Jul 01 2017 EXAMPLE There are 76 ways to choose six 2 X 2 X 2 triangles (aaa, ..., fff) from a 6 X 6 X 6 point grid, for example: a a a a a a . . . b . c b b c c b b c c d b e c f d . e . f d d e e f f d d e e f f Note: aaa, ..., fff are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only. PROG (PARI) concat(0, Vec(4*x^6*(19 + 2492*x + 58629*x^2 + 249487*x^3 + 78686*x^4 - 397088*x^5 + 93163*x^6 + 160960*x^7 - 77014*x^8 - 10728*x^9 + 4312*x^10 + 5013*x^11 - 1611*x^12) / (1 - x)^13 + O(x^40))) \\ Colin Barker, Jul 01 2017 CROSSREFS Cf. A289222, A289223, A289224, A289225, A289226, A289228. Sequence in context: A184290 A093238 A185984 * A028480 A229413 A111682 Adjacent sequences: A289224 A289225 A289226 * A289228 A289229 A289230 KEYWORD nonn,easy AUTHOR Heinrich Ludwig, Jul 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 4 12:45 EST 2024. Contains 370532 sequences. (Running on oeis4.)