The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289226 Number of ways to select 5 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle. 8
 0, 420, 15108, 190371, 1336320, 6528948, 24951780, 79851975, 223419840, 562591836, 1301255556, 2806131075, 5705746752, 11034449244, 20436317412, 36447218199, 62877079680, 105318792564, 171815016708, 273719593923, 426796282752, 652604165220, 980226360036, 1448406641607 (list; graph; refs; listen; history; text; internal format)
 OFFSET 5,2 COMMENTS Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289232. LINKS Heinrich Ludwig, Table of n, a(n) for n = 5..100 Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). FORMULA a(n) = (n^10 -10*n^9 -85*n^8 +1160*n^7 +1345*n^6 -49162*n^5 +62145*n^4 +892140*n^3 -2198566*n^2 -5725008*n +18190440)/120. G.f.: 3*x^6*(140 + 3496*x + 15761*x^2 + 1293*x^3 - 18129*x^4 + 3779*x^5 + 6103*x^6 - 1637*x^7 - 1139*x^8 + 413*x^9) / (1 - x)^11. - Colin Barker, Jul 01 2017 EXAMPLE There are 420 ways to choose five 2 X 2 X 2 triangles (aaa, ..., eee) from a 6 X 6 X 6 point grid, for example:         .               a        . .             a a       . . .           . d .      a a b b         b d d c     c a d b e       b b e c c    c c d d e e     . . e e . . Note: aaa, ..., eee are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only. PROG (PARI) concat(0, Vec(3*x^6*(140 + 3496*x + 15761*x^2 + 1293*x^3 - 18129*x^4 + 3779*x^5 + 6103*x^6 - 1637*x^7 - 1139*x^8 + 413*x^9) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Jul 01 2017 CROSSREFS Cf. A289222, A289223, A289224, A289225, A289227, A289228, A289232. Sequence in context: A166784 A223365 A288071 * A133712 A058834 A022046 Adjacent sequences:  A289223 A289224 A289225 * A289227 A289228 A289229 KEYWORD nonn,easy AUTHOR Heinrich Ludwig, Jul 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 10:11 EST 2022. Contains 350510 sequences. (Running on oeis4.)