login
A028078
Expansion of 1/((1-3*x)*(1-6*x)*(1-7*x)*(1-12*x)).
1
1, 28, 511, 7762, 107065, 1397536, 17652307, 218558494, 2673170269, 32451457324, 392152259863, 4725695939146, 56851786048513, 683251595827192, 8206387016186779, 98529159613684918, 1182723165477092197, 14195324589704967940, 170362624423844562655
OFFSET
0,2
FORMULA
a(n) = (2*12^(n+3)-27*7^(n+3)+30*6^(n+3)-5*3^(n+3))/540. - Yahia Kahloune, Jun 10 2013
a(n) = 28*a(n-1)-273*a(n-2)+1098*a(n-3)-1512*a(n-4). - Wesley Ivan Hurt, Oct 21 2014
MAPLE
A028078:=n->(2*12^(n+3)-27*7^(n+3)+30*6^(n+3)-5*3^(n+3))/540: seq(A028078(n), n=0..20); # Wesley Ivan Hurt, Oct 21 2014
MATHEMATICA
CoefficientList[Series[1/((1 - 3 x) (1 - 6 x) (1 - 7 x) (1 - 12 x)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Oct 21 2014 *)
LinearRecurrence[{28, -273, 1098, -1512}, {1, 28, 511, 7762}, 20] (* Harvey P. Dale, Oct 10 2020 *)
PROG
(Magma) [(2*12^(n+3)-27*7^(n+3)+30*6^(n+3)-5*3^(n+3))/540 : n in [0..20]]; // Wesley Ivan Hurt, Oct 21 2014
CROSSREFS
Sequence in context: A028119 A028069 A028007 * A028000 A028067 A024771
KEYWORD
nonn,easy
AUTHOR
STATUS
approved