login
A028076
Expansion of 1/((1-3x)(1-6x)(1-7x)(1-10x)).
1
1, 26, 435, 5980, 73721, 849966, 9381535, 100546160, 1055929941, 10932713506, 112061907035, 1140487891140, 11548313690161, 116513300146646, 1172500867726935, 11777524096712920, 118148491080002381, 1184131514779885386, 11860044495183801235
OFFSET
0,2
FORMULA
a(n) = (10^(n+3)-7^(n+4)+7*6^(n+3)-3^(n+3))/84. [Yahia Kahloune, Jun 10 2013]
MAPLE
A028076:=n->(10^(n+3)-7^(n+4)+7*6^(n+3)-3^(n+3))/84; seq(A028076(n), n=0..20); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
Table[(10^(n+3)-7^(n+4)+7*6^(n+3)-3^(n+3))/84, {n, 0, 20}] (* Wesley Ivan Hurt, Feb 26 2014 *)
CoefficientList[Series[1/((1 - 3 x) (1 - 6 x) (1 - 7 x) (1 - 10 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 04 2014 *)
PROG
(Magma) [(10^(n+3)-7^(n+4)+7*6^(n+3)-3^(n+3))/84: n in [0..20]]; // Vincenzo Librandi, Mar 04 2014
CROSSREFS
Sequence in context: A028120 A028079 A028117 * A028005 A028065 A028113
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Mar 04 2014
STATUS
approved