OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..900
Index entries for linear recurrences with constant coefficients, signature (28, -271, 1032, -1188).
FORMULA
a(n) = (14*11^(n+3)-30*9^(n+3)+21*6^(n+3)-5*2^(n+3))/1260 . [Yahia Kahloune, Jun 05 2013]
In general,for the expansion of 1/((1-r*x)(1-s*x)(1-t*x)(1-u*x) with u>t>s>r, we have the formula: a(n) =[G(u)*u^(n+3) - G(t)*t^(n+3) + G(s)*s^(n+3)- G(r)*r^(n+3)]/[G(u)*G(t)*G(s)*G(r)]^(1/2). In which G(u)=(t-s)*(t-r)*(s-r); G(t) =(u-s)*(u-r)*(s-r); G(s) =(u-t)*(u-r)*(t-r); G(r) =(u-t)*(u-s)*(t-s). [Yahia Kahloune, Sep 10 2013]
a(n) = 28*a(n-1) - 271*a(n-2) + 1032*a(n-3) - 1188*a(n-4) for n>3. - Vincenzo Librandi, Jun 03 2014
MATHEMATICA
CoefficientList[Series[1/((1 - 2 x) (1 - 6 x) (1 - 9 x) (1 - 11 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 03 2014 *)
PROG
(Magma) I:=[1, 28, 513, 7808]; [n le 4 select I[n] else 28*Self(n-1)-271*Self(n-2)+1032*Self(n-3)-1188*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 03 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved