login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027919
a(n) = least k such that 2nd elementary symmetric function of {1,2,...,k+1} >= 3rd elementary symmetric function of {1,2,...,n}.
1
2, 4, 6, 8, 11, 13, 16, 19, 22, 25, 29, 32, 36, 39, 43, 47, 51, 56, 60, 64, 69, 74, 78, 83, 88, 93, 98, 103, 109, 114, 119, 125, 131, 136, 142, 148, 154, 160, 166, 172, 178, 185, 191, 198, 204, 211, 217, 224, 231, 238, 245, 252, 259, 266
OFFSET
3,1
FORMULA
a(n) = min{k: A000914(k) >= A001303(n-2)}. - Sean A. Irvine, Dec 10 2019
MAPLE
SymmPolyn := proc(L::list, n::integer)
local c, a, sel;
a :=0 ;
sel := combinat[choose](nops(L), n) ;
for c in sel do
a := a+mul(L[e], e=c) ;
end do:
a;
end proc:
A027919 := proc(n)
local k, i;
[seq(i, i=1..n)] ;
e3 := SymmPolyn(%, 3) ;
for k from 1 do
[seq(i, i=1..k+1)] ;
if SymmPolyn(%, 2) >= e3 then
return k;
end if;
end do:
end proc: # R. J. Mathar, Sep 23 2016
CROSSREFS
Sequence in context: A022819 A081527 A070978 * A174058 A186382 A331417
KEYWORD
nonn
EXTENSIONS
Definition modified by R. J. Mathar, Sep 23 2016
STATUS
approved