login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027435
Number of distinct products ij with 1 <= i <= n, 1 <= j <= n, (i,j)=1.
3
1, 2, 4, 6, 10, 11, 17, 21, 27, 29, 39, 42, 54, 57, 62, 70, 86, 89, 107, 113, 120, 125, 147, 152, 172, 178, 196, 204, 232, 236, 266, 282, 294, 302, 320, 329, 365, 374, 388, 400, 440, 446, 488, 501, 518, 529, 575, 586, 628, 638, 657, 672, 724, 733, 758, 778
OFFSET
1,2
COMMENTS
S. W. Golomb, personal communication, Svalbard, Norway, 7/97.
LINKS
Harri Hakula, Pauliina Ilmonen, Vesa Kaarnioja, Computation of extremal eigenvalues of high-dimensional lattice-theoretic tensors via tensor-train decompositions, arXiv:1705.05163 [math.NA], 2017. See Table 2, d=4,5.
FORMULA
a(n) = Sum_{k=1..n} A014665(n). - Sean A. Irvine, Nov 15 2018
For n>1: # of positive integers u <= n(n-1) such that p^H_p(u)<=n for all p<=u, where H_p(u) = highest power of p dividing u.
a(n) = A236309(n) + 1. - Andrew Howroyd, Nov 16 2018
MAPLE
A027435 := proc(n)
local L, i, j ;
L := {};
for i from 1 to n do
for j from 1 to n do
if igcd(i, j) = 1 then
L := L union {i*j};
end if;
end do:
end do:
nops(L);
end proc: # R. J. Mathar, Jun 09 2016
MATHEMATICA
Array[-Boole[# > 1] + Length@ Union@ Apply[Join, Table[If[CoprimeQ @@ #, i j, 0] &@ {i, j}, {i, #}, {j, #}]] &, 56] (* Michael De Vlieger, Nov 01 2017 *)
PROG
(PARI) a(n)={#Set(concat(vector(n, i, [i*j | j<-[1..n], gcd(i, j)==1])))} \\ Andrew Howroyd, Nov 15 2018
(PARI) seq(n)={my(v=vector(n), t=1); for(n=1, n, t+=sum(i=1, n-1, gcd(i, n) == 1 && 0==sumdiv(i*n, d, my(t=i*n/d); gcd(t, d)==1 && d<n && t<d)); v[n]=t); v} \\ Andrew Howroyd, Nov 16 2018
CROSSREFS
Sequence in context: A026429 A086917 A004789 * A014666 A067852 A253968
KEYWORD
nonn
EXTENSIONS
More terms from Olivier Gérard, Nov 15 1997
STATUS
approved