login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027381
Number of irreducible polynomials of degree n over GF(9); dimensions of free Lie algebras.
4
1, 9, 36, 240, 1620, 11808, 88440, 683280, 5380020, 43046640, 348672528, 2852823600, 23535749880, 195528140640, 1634056262280, 13726075468992, 115813759112820, 981010688215680, 8338590828280440, 71097458824894320
OFFSET
0,2
COMMENTS
Number of aperiodic necklaces with n beads of 9 colors. - Herbert Kociemba, Nov 25 2016
REFERENCES
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1051 (terms 0..200 from T. D. Noe)
A. Pakapongpun, T. Ward, Functorial Orbit Counting, JIS 12 (2009) 09.2.4, example 3.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
FORMULA
G.f.: k=9, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) = Sum_{d|n} mu(d)*9^(n/d)/n for n > 0. - Andrew Howroyd, Oct 13 2017
EXAMPLE
G.f. = 1 + 9*x + 36*x^2 + 240*x^3 + 1620*x^4 + 11808*x^5 + 88440*x^6 + ...
MATHEMATICA
f[n_] := (1/n)*Sum[ MoebiusMu[d]*9^(n/d), {d, Divisors[n]}]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Jul 28 2014 *)
mx=40; f[x_, k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i, {i, 1, mx}]; CoefficientList[Series[f[x, 9], {x, 0, mx}], x] (* Herbert Kociemba, Nov 25 2016 *)
PROG
(PARI) a(n) = if(n, sumdiv(n, d, moebius(d)*9^(n/d))/n, 1) \\ Altug Alkan, Dec 01 2015
CROSSREFS
Column 9 of A074650.
Cf. A001037.
Sequence in context: A038780 A073984 A036907 * A335783 A024120 A262782
KEYWORD
nonn
STATUS
approved