|
|
A027381
|
|
Number of irreducible polynomials of degree n over GF(9); dimensions of free Lie algebras.
|
|
4
|
|
|
1, 9, 36, 240, 1620, 11808, 88440, 683280, 5380020, 43046640, 348672528, 2852823600, 23535749880, 195528140640, 1634056262280, 13726075468992, 115813759112820, 981010688215680, 8338590828280440, 71097458824894320
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of aperiodic necklaces with n beads of 9 colors. - Herbert Kociemba, Nov 25 2016
|
|
REFERENCES
|
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..1051 (terms 0..200 from T. D. Noe)
A. Pakapongpun, T. Ward, Functorial Orbit Counting, JIS 12 (2009) 09.2.4, example 3.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
Index entries for sequences related to Lyndon words
|
|
FORMULA
|
G.f.: k=9, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) = Sum_{d|n} mu(d)*9^(n/d)/n for n > 0. - Andrew Howroyd, Oct 13 2017
|
|
EXAMPLE
|
G.f. = 1 + 9*x + 36*x^2 + 240*x^3 + 1620*x^4 + 11808*x^5 + 88440*x^6 + ...
|
|
MATHEMATICA
|
f[n_] := (1/n)*Sum[ MoebiusMu[d]*9^(n/d), {d, Divisors[n]}]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Jul 28 2014 *)
mx=40; f[x_, k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i, {i, 1, mx}]; CoefficientList[Series[f[x, 9], {x, 0, mx}], x] (* Herbert Kociemba, Nov 25 2016 *)
|
|
PROG
|
(PARI) a(n) = if(n, sumdiv(n, d, moebius(d)*9^(n/d))/n, 1) \\ Altug Alkan, Dec 01 2015
|
|
CROSSREFS
|
Column 9 of A074650.
Cf. A001037.
Sequence in context: A038780 A073984 A036907 * A335783 A024120 A262782
Adjacent sequences: A027378 A027379 A027380 * A027382 A027383 A027384
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|