OFFSET
0,2
COMMENTS
Number of aperiodic necklaces with n beads of 9 colors. - Herbert Kociemba, Nov 25 2016
REFERENCES
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1051 (terms 0..200 from T. D. Noe)
A. Pakapongpun, T. Ward, Functorial Orbit Counting, JIS 12 (2009) 09.2.4, example 3.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
FORMULA
G.f.: k=9, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) = Sum_{d|n} mu(d)*9^(n/d)/n for n > 0. - Andrew Howroyd, Oct 13 2017
EXAMPLE
G.f. = 1 + 9*x + 36*x^2 + 240*x^3 + 1620*x^4 + 11808*x^5 + 88440*x^6 + ...
MATHEMATICA
f[n_] := (1/n)*Sum[ MoebiusMu[d]*9^(n/d), {d, Divisors[n]}]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Jul 28 2014 *)
mx=40; f[x_, k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i, {i, 1, mx}]; CoefficientList[Series[f[x, 9], {x, 0, mx}], x] (* Herbert Kociemba, Nov 25 2016 *)
PROG
(PARI) a(n) = if(n, sumdiv(n, d, moebius(d)*9^(n/d))/n, 1) \\ Altug Alkan, Dec 01 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved