login
A027378
Expansion of (1+x^2-x^3)/(1-x)^4.
1
1, 4, 11, 23, 41, 66, 99, 141, 193, 256, 331, 419, 521, 638, 771, 921, 1089, 1276, 1483, 1711, 1961, 2234, 2531, 2853, 3201, 3576, 3979, 4411, 4873, 5366, 5891, 6449, 7041, 7668, 8331, 9031, 9769, 10546
OFFSET
0,2
COMMENTS
If Y is a 3-subset of an n-set X then, for n>=4, a(n-4) is the number of (n-3)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
FORMULA
a(n) = binomial(n+4, 3) - 3*(n+1). - Milan Janjic, Dec 28 2007 [Correction by Mathew Englander, Feb 03 2022]
a(n) = A006503(n) + 1 = A034857(n) + 5 = A116721(n+2) - 1 = A006416(n+1) + 3. - Mathew Englander, Feb 03 2022
E.g.f.: (1/6)*(6 + 18*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 30 2022
MATHEMATICA
CoefficientList[Series[(1+x^2-x^3)/(1-x)^4, {x, 0, 50}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 4, 11, 23}, 50] (* Harvey P. Dale, May 17 2021 *)
PROG
(Magma) [(n^3 +9*n^2 +8*n +6)/6: n in [0..50]]; // G. C. Greubel, Jul 30 2022
(SageMath) [(n^3 +9*n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Jul 30 2022
CROSSREFS
Appears to be first differences of A252814.
First differences at A027379 (omitting first term).
Sequence in context: A009907 A301159 A298023 * A131177 A092498 A301165
KEYWORD
nonn,easy
STATUS
approved