login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027378 Expansion of (1+x^2-x^3)/(1-x)^4. 1
1, 4, 11, 23, 41, 66, 99, 141, 193, 256, 331, 419, 521, 638, 771, 921, 1089, 1276, 1483, 1711, 1961, 2234, 2531, 2853, 3201, 3576, 3979, 4411, 4873, 5366, 5891, 6449, 7041, 7668, 8331, 9031, 9769, 10546 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

If Y is a 3-subset of an n-set X then, for n>=4, a(n-4) is the number of (n-3)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = binomial(n+4, 3) - 3*(n+1). - Milan Janjic, Dec 28 2007 [Correction by Mathew Englander, Feb 03 2022]

a(n) = A006503(n) + 1 = A034857(n) + 5 = A116721(n+2) - 1 = A006416(n+1) + 3. - Mathew Englander, Feb 03 2022

E.g.f.: (1/6)*(6 + 18*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 30 2022

MATHEMATICA

CoefficientList[Series[(1+x^2-x^3)/(1-x)^4, {x, 0, 50}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 4, 11, 23}, 50] (* Harvey P. Dale, May 17 2021 *)

PROG

(Magma) [(n^3 +9*n^2 +8*n +6)/6: n in [0..50]]; // G. C. Greubel, Jul 30 2022

(SageMath) [(n^3 +9*n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Jul 30 2022

CROSSREFS

Cf. A006416, A006503, A034857, A116721.

Appears to be first differences of A252814.

First differences at A027379 (omitting first term).

Sequence in context: A009907 A301159 A298023 * A131177 A092498 A301165

Adjacent sequences: A027375 A027376 A027377 * A027379 A027380 A027381

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 05:43 EST 2023. Contains 359939 sequences. (Running on oeis4.)