login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of irreducible polynomials of degree n over GF(9); dimensions of free Lie algebras.
4

%I #44 Nov 22 2017 16:42:00

%S 1,9,36,240,1620,11808,88440,683280,5380020,43046640,348672528,

%T 2852823600,23535749880,195528140640,1634056262280,13726075468992,

%U 115813759112820,981010688215680,8338590828280440,71097458824894320

%N Number of irreducible polynomials of degree n over GF(9); dimensions of free Lie algebras.

%C Number of aperiodic necklaces with n beads of 9 colors. - _Herbert Kociemba_, Nov 25 2016

%D E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.

%D M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

%H Seiichi Manyama, <a href="/A027381/b027381.txt">Table of n, a(n) for n = 0..1051</a> (terms 0..200 from T. D. Noe)

%H A. Pakapongpun, T. Ward, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Ward/ward17.html">Functorial Orbit Counting</a>, JIS 12 (2009) 09.2.4, example 3.

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

%H G. Viennot, <a href="http://dx.doi.org/10.1007/BFb0067950">Algèbres de Lie Libres et Monoïdes Libres</a>, Lecture Notes in Mathematics 691, Springer Verlag 1978.

%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>

%F G.f.: k=9, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - _Herbert Kociemba_, Nov 25 2016

%F a(n) = Sum_{d|n} mu(d)*9^(n/d)/n for n > 0. - _Andrew Howroyd_, Oct 13 2017

%e G.f. = 1 + 9*x + 36*x^2 + 240*x^3 + 1620*x^4 + 11808*x^5 + 88440*x^6 + ...

%t f[n_] := (1/n)*Sum[ MoebiusMu[d]*9^(n/d), {d, Divisors[n]}]; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Jul 28 2014 *)

%t mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,9],{x,0,mx}],x] (* _Herbert Kociemba_, Nov 25 2016 *)

%o (PARI) a(n) = if(n, sumdiv(n, d, moebius(d)*9^(n/d))/n, 1) \\ _Altug Alkan_, Dec 01 2015

%Y Column 9 of A074650.

%Y Cf. A001037.

%K nonn

%O 0,2

%A _N. J. A. Sloane_