login
A025316
Numbers that are the sum of 2 distinct nonzero squares in 6 or more ways.
5
5525, 9425, 11050, 12025, 12325, 13325, 14365, 15725, 17225, 17425, 18785, 18850, 19825, 21125, 22100, 22525, 23725, 24050, 24505, 24650, 25925, 26650, 26825, 27625, 28730, 28925, 29725, 31025, 31265, 31450, 31525, 32045, 32825, 34450, 34645, 34850
OFFSET
1,1
COMMENTS
Subsequence of A025297. But sequences A025316 and A025297 are different. 2*5^10 = 19531250 = 3125^2 + 3125^2 (not distinct squares) = 2879^2 + 3353^2 = 2125^2 + 3875^2 = 1825^2 + 4025^2 = 955^2 + 4315^2 = 625^2 + 4375^2 is not in A025316. - Vaclav Kotesovec, Feb 27 2016
Numbers in A025297 but not in A025316 are exactly those numbers of the form 2*p_1^(2*a_1)*p_2^(2*a_2)*...*p_m^(2*a_m)*q^10 where p_i are primes of the form 4k+3 and q is a prime of the form 4k+1. Thus 2*5^10 is the smallest term in A025297 that is not in A025316. - Chai Wah Wu, Feb 27 2016
MATHEMATICA
nn = 34850; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, _?(# >= 6 &)]] (* T. D. Noe, Apr 07 2011 *)
CROSSREFS
Sequence in context: A025315 A097103 A025297 * A025289 A025307 A068269
KEYWORD
nonn
STATUS
approved