login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025315
Numbers that are the sum of 2 distinct nonzero squares in 5 or more ways.
5
5525, 8125, 9425, 10625, 11050, 12025, 12325, 13325, 14365, 15725, 16250, 17225, 17425, 18125, 18785, 18850, 19825, 21125, 21250, 22100, 22525, 23125, 23725, 24050, 24505, 24650, 25625, 25925, 26650, 26825, 27625, 28730, 28925, 29725, 31025, 31265
OFFSET
1,1
COMMENTS
Subsequence of A025296. But sequences A025315 and A025296 are different. 2*5^8 = 781250 = 625^2 + 625^2 (not distinct squares) = 425^2 + 775^2 = 365^2 + 805^2 = 191^2 + 863^2 = 125^2 + 875^2 is not in A025315. - Vaclav Kotesovec, Feb 27 2016
Numbers in A025296 but not in A025315 are exactly those numbers of the form 2*p_1^(2*a_1)*p_2^(2*a_2)*...*p_m^(2*a_m)*q_1^8 or of the form 2*p_1^(2*a_1)*p_2^(2*a_2)*...*p_m^(2*a_m)*q_1^2*q_2^2 where p_i are primes of the form 4k+3 and q_1, q_2 are distinct primes of the form 4k+1. Thus 2*5^2*13^2 = 8450 is the smallest term in A025296 that is not in A025315. - Chai Wah Wu, Feb 27 2016
MATHEMATICA
nn = 31265; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, _?(# >= 5 &)]] (* T. D. Noe, Apr 07 2011 *)
CROSSREFS
Sequence in context: A250876 A165443 A025296 * A097103 A025297 A025316
KEYWORD
nonn
STATUS
approved