OFFSET
1,1
COMMENTS
Subsequence of A025300. But sequences A025319 and A025300 are different. 2*5^16 = 305175781250 = 36425^2 + 551225^2 = 78125^2 + 546875^2 = 119375^2 + 539375^2 = 189311^2 + 518977^2 = 228125^2 + 503125^2 = 265625^2 + 484375^2 = 301595^2 + 462835^2 = 359875^2 + 419125^2 = 390625^2 + 390625^2 (not distinct squares) is not in A025319. - Vaclav Kotesovec, Feb 27 2016
Numbers in A025300 but not in A025319 are exactly those numbers of the form 2*p_1^(2*a_1)*p_2^(2*a_2)*...*p_m^(2*a_m)*q^16 where p_i are primes of the form 4k+3 and q is a prime of the form 4k+1. Thus 2*5^16 is the smallest term in A025300 that is not in A025319. - Chai Wah Wu, Feb 27 2016
LINKS
MATHEMATICA
nn = 337025; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, _?(# >= 9 &)]] (* T. D. Noe, Apr 07 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved