|
|
A025319
|
|
Numbers that are the sum of 2 distinct nonzero squares in 9 or more ways.
|
|
5
|
|
|
71825, 93925, 122525, 138125, 143650, 156325, 160225, 173225, 187850, 204425, 209525, 223925, 226525, 235625, 244205, 245050, 257725, 267325, 273325, 276250, 287300, 292825, 296225, 300625, 308125, 308425, 312650, 320450, 333125, 337025
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Subsequence of A025300. But sequences A025319 and A025300 are different. 2*5^16 = 305175781250 = 36425^2 + 551225^2 = 78125^2 + 546875^2 = 119375^2 + 539375^2 = 189311^2 + 518977^2 = 228125^2 + 503125^2 = 265625^2 + 484375^2 = 301595^2 + 462835^2 = 359875^2 + 419125^2 = 390625^2 + 390625^2 (not distinct squares) is not in A025319. - Vaclav Kotesovec, Feb 27 2016
Numbers in A025300 but not in A025319 are exactly those numbers of the form 2*p_1^(2*a_1)*p_2^(2*a_2)*...*p_m^(2*a_m)*q^16 where p_i are primes of the form 4k+3 and q is a prime of the form 4k+1. Thus 2*5^16 is the smallest term in A025300 that is not in A025319. - Chai Wah Wu, Feb 27 2016
|
|
LINKS
|
Chai Wah Wu, Table of n, a(n) for n = 1..10000
Index entries for sequences related to sums of squares
|
|
MATHEMATICA
|
nn = 337025; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, _?(# >= 9 &)]] (* T. D. Noe, Apr 07 2011 *)
|
|
CROSSREFS
|
Sequence in context: A114661 A119397 A025300 * A097245 A025292 A025310
Adjacent sequences: A025316 A025317 A025318 * A025320 A025321 A025322
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|