The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025178 First differences of the central trinomial coefficients A002426. 3
 0, 2, 4, 12, 32, 90, 252, 714, 2032, 5814, 16700, 48136, 139152, 403286, 1171380, 3409020, 9938304, 29017878, 84844044, 248382516, 727971360, 2135784798, 6272092596, 18435108258, 54228499920, 159636389850, 470256930052, 1386170197704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Previous name was: "a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0 = s(n), |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n), where T is the array defined in A025177." Note that n-1 divides a(n) for n>=2. - T. D. Noe, Mar 16 2005 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA a(n) = T(n,n) for n>=1, where T is the array defined in A025177. a(n) = A002426(n+1) - A002426(n). - Benoit Cloitre, Nov 02 2002 a(n) is asymptotic to c*3^n/sqrt(n) with c around 1.02... - Benoit Cloitre, Nov 02 2002 a(n) = 2*(n-1)*A001006(n-2). - M. F. Hasler, Oct 24 2011 a(n) = 2*A005717(n-1). - R. J. Mathar, Jul 09 2012 E.g.f. Integral(Integral(2*exp(x)*((1-1/x)*BesselI(1,2*x) + 2*BesselI(0,2*x)))). - Sergei N. Gladkovskii, Aug 16 2012 G.f.: -1/x + (1/x-1)/sqrt(1-2*x-3*x^2). - Sergei N. Gladkovskii, Aug 16 2012 D-finite with recurrence: a(n) = ((2+n)*a(n-2)+3*(3-n)*a(n-3)+3*(n-1)*a(n-1))/n, a(0)=1, a(1)=0, a(2)=2. - Sergei N. Gladkovskii, Aug 16 2012 [adapted to new offset by Peter Luschny, Nov 04 2015] G.f.: (1-x)/x^2*G(0) - 1/x^2 , where G(k)= 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013 From Peter Bala, Oct 28 2015: (Start) a(n) = Sum_{k = 0..floor(n/2)} binomial(n-1,2*k-1)*binomial(2*k,k). Cf. A097893. n*(n-2)*a(n) = (2*n-3)*(n-1)*a(n-1) + 3*(n-1)*(n-2)*a(n-2) with a(1) = 0, a(2) = 2. (End) From Peter Luschny, Oct 29 2015: (Start) a(n) = 2*(n-1)*hypergeom([1-n/2,3/2-n/2],[2],4). a(n) = (n-1)!*[x^(n-1)](2*exp(x)*BesselI(1,2*x)). a(n) = (n-1)*A007971(n) for n>=2. A105696(n) = a(n-1) + a(n) for n>=2. A162551(n-2) = (1/2)*Sum_{k=1..n} binomial(n,k)*a(k) for n>=2. A079309(n) = (1/2)*Sum_{k=1..2*n} (-1)^k*binomial(2*n,k)*a(k) for n>=1. (End) MAPLE a := n -> 2*(n-1)*hypergeom([1-n/2, 3/2-n/2], [2], 4): seq(simplify(a(n)), n=1..28); # Peter Luschny, Oct 29 2015 MATHEMATICA Rest[Differences[CoefficientList[Series[x/Sqrt[1-2x-3x^2], {x, 0, 30}], x]]] (* Harvey P. Dale, Aug 22 2011 *) Differences[Table[Hypergeometric2F1[(1-n)/2, 1-n/2, 1, 4], {n, 1, 29}]] (* Peter Luschny, Nov 03 2015 *) PROG (PARI) a(n) = sum(k=1, n\2, binomial(n-1, 2*k-1)*binomial(2*k, k)); \\ Altug Alkan, Oct 29 2015 (Sage) def a(): b, c, n = 0, 2, 2 yield b while True: yield c b, c = c, ((2*n-1)*c+3*(n-1)*b)*n//((n+1)*(n-1)) n += 1 A025178 = a() print([next(A025178) for _ in (1..20)]) # Peter Luschny, Nov 04 2015 CROSSREFS Cf. A001006, A002426, A005717, A007971, A025177, A079309, A097893, A105696, A162551. Sequence in context: A028860 A152035 A026151 * A231295 A087211 A161177 Adjacent sequences: A025175 A025176 A025177 * A025179 A025180 A025181 KEYWORD nonn,easy AUTHOR Clark Kimberling EXTENSIONS New name based on a comment by T. D. Noe, Mar 16 2005, offset set to 1 and a(1) = 0 prepended by Peter Luschny, Nov 04 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 02:53 EDT 2024. Contains 373392 sequences. (Running on oeis4.)