login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024620
Positions of primes among the powers of primes (A000961).
5
2, 3, 5, 6, 9, 10, 12, 13, 14, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94
OFFSET
1,1
LINKS
FORMULA
A025474(a(n)) = 1. - Reinhard Zumkeller, May 01 2015
a(n) = A001222(A056604(n)) + 1. - Eric Desbiaux, Dec 02 2018
From Ridouane Oudra, Oct 18 2020: (Start)
a(n) = A027883(n) + 1;
a(n) = A025528(A000040(n)) + 1;
a(n) = A065515(A000040(n)). (End)
MATHEMATICA
a[n_] := PrimeOmega[LCM @@ Range@Prime@n] + 1; Array[a, 100] (* Amiram Eldar, Dec 02 2018 *)
PROG
(PARI) lista(nn) = my(powpr = select((i->((omega(i)==1) || (i==1))), [1..nn])); for (i = 1, #powpr, if (isprime(powpr[i]), print1(i, ", ")); ); \\ Michel Marcus, Jun 03 2021
(Haskell)
a024620 n = a024620_list !! (n-1)
a024620_list = filter ((== 1) . a025474) [1..]
-- Reinhard Zumkeller, May 01 2015
(Python)
from sympy import prime, primepi, integer_nthroot
def A024620(n):
x = prime(n)
return n+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())) # Chai Wah Wu, Nov 05 2024
CROSSREFS
Complement of A024621.
Cf. A001222 (bigomega), A025474, A056604, A027883.
Sequence in context: A018762 A059746 A362030 * A232527 A188375 A047331
KEYWORD
nonn
STATUS
approved