login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024347
Expansion of 1/((1-x)*(1-6*x)*(1-9*x)*(1-12*x)).
4
1, 28, 523, 8218, 117649, 1592416, 20790631, 264958246, 3320750557, 41132364364, 505211150899, 6167574174034, 74958865496425, 908053837462072, 10973667150086527, 132377759927894782, 1594780291608334453
OFFSET
0,2
FORMULA
a(n) = (20*12^(n+3) - 55*9^(n+3) + 44*6^(n+3) - 9)/3960. - Yahia Kahloune, Jun 28 2013
a(n) = 28*a(n-1) - 261*a(n-2) + 882*a(n-3) - 648*a(n-4) for n > 3; a(0)=1, a(1)=28, a(2)=523, a(3)=8218. - Vincenzo Librandi, Jul 16 2013
E.g.f.: (-9*exp(x) + 9504*exp(6*x) - 40095*exp(9*x) + 34560*exp(12*x))/3960. - G. C. Greubel, Jan 30 2022
MAPLE
A024347:= n -> (20*12^(n+3) - 55*9^(n+3) + 44*6^(n+3) -9)/3960; seq(A024347(n), n=0..20); # G. C. Greubel, Jan 30 2022
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-6x)(1-9x)(1-12x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 16 2013 *)
PROG
(PARI) Vec(1/((1-x)*(1-6*x)*(1-9*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-6*x)*(1-9*x)*(1-12*x)))); /* or */ I:=[1, 28, 523, 8218]; [n le 4 select I[n] else 28*Self(n-1)-261*Self(n-2)+882*Self(n-3)-648*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 16 2013
(Sage) [(20*12^(n+3) - 55*9^(n+3) + 44*6^(n+3) -9)/3960 for n in (0..20)] # G. C. Greubel, Jan 30 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved