|
|
A024348
|
|
Expansion of tan(x^2).
|
|
2
|
|
|
2, 240, 483840, 4704860160, 140016638361600, 9962283186074419200, 1448674564423160954880000, 386164234578290422390456320000, 174195452900540085852580211589120000, 125069935244132704803738682551120691200000, 136166701199201243586499061842886142826905600000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
S:= series(tan(x), x, 52):
seq(coeff(S, x, 2*k+1)*(4*k+2)!, k=0..25); # Robert Israel, Dec 20 2018
|
|
MATHEMATICA
|
With[{m=50}, CoefficientList[Series[Tan[x^2], {x, 0, m}], x]*Range[0, m]!][[3;; ;; 4]] (* G. C. Greubel, Jan 31 2022 *)
|
|
PROG
|
(Sage) [factorial(4*n+2)*( tan(x^2) ).series(x, 4*n+3).list()[4*n+2] for n in (0..20)] # G. C. Greubel, Jan 31 2022
(Magma)
m:=50; R<x>:=PowerSeriesRing(Rationals(), m);
b:= Coefficients(R!(Laplace( Tan(x^2) )));
[b[4*n-3]: n in [1..Floor((m-2)/4)]]; // G. C. Greubel, Jan 31 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|