login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023861 a(n) = 1*t(n) + 2*t(n-1) + ... + k*t(n+1-k), where k=floor((n+1)/2) and t = A000032 (Lucas numbers). 1
1, 3, 10, 15, 37, 61, 126, 203, 384, 622, 1114, 1802, 3119, 5047, 8542, 13821, 23047, 37291, 61568, 99619, 163376, 264348, 431588, 698324, 1136685, 1839195, 2987682, 4834171, 7842313, 12689129, 20566754, 33277707, 53905168, 87220394, 141229566, 228514238, 369921435 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

Conjecture: G.f.: x*(-1-3*x^5+x^4+2*x^3-4*x^2-2*x)/((x^2+x-1)* (x^4+x^2-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009

MATHEMATICA

Table[Sum[j*LucasL[n+1-j], {j, 1, Floor[(n+1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *)

PROG

(PARI) lucas(n) = fibonacci(n-1)+fibonacci(n+1);

a(n) = sum(j=1, floor((n+1)/2), j*lucas(n+1-j)); \\ G. C. Greubel, Jun 12 2019

(MAGMA) [(&+[j*Lucas(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019

(Sage) [sum(j*lucas_number2(n+1-j, 1, -1) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019

CROSSREFS

Sequence in context: A233312 A330940 A020330 * A037345 A217278 A175336

Adjacent sequences:  A023858 A023859 A023860 * A023862 A023863 A023864

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Title simplified by Sean A. Irvine, Jun 12 2019

Terms a(30) onward added by G. C. Greubel, Jun 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 11:30 EDT 2021. Contains 347472 sequences. (Running on oeis4.)