login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023861
a(n) = 1*t(n) + 2*t(n-1) + ... + k*t(n+1-k), where k=floor((n+1)/2) and t = A000032 (Lucas numbers).
1
1, 3, 10, 15, 37, 61, 126, 203, 384, 622, 1114, 1802, 3119, 5047, 8542, 13821, 23047, 37291, 61568, 99619, 163376, 264348, 431588, 698324, 1136685, 1839195, 2987682, 4834171, 7842313, 12689129, 20566754, 33277707, 53905168, 87220394, 141229566, 228514238, 369921435
OFFSET
1,2
LINKS
FORMULA
Conjecture: G.f.: x*(-1-3*x^5+x^4+2*x^3-4*x^2-2*x)/((x^2+x-1)* (x^4+x^2-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
MATHEMATICA
Table[Sum[j*LucasL[n+1-j], {j, 1, Floor[(n+1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *)
PROG
(PARI) lucas(n) = fibonacci(n-1)+fibonacci(n+1);
a(n) = sum(j=1, floor((n+1)/2), j*lucas(n+1-j)); \\ G. C. Greubel, Jun 12 2019
(Magma) [(&+[j*Lucas(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019
(Sage) [sum(j*lucas_number2(n+1-j, 1, -1) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019
CROSSREFS
Sequence in context: A330940 A351010 A020330 * A037345 A217278 A175336
KEYWORD
nonn
EXTENSIONS
Title simplified by Sean A. Irvine, Jun 12 2019
Terms a(30) onward added by G. C. Greubel, Jun 12 2019
STATUS
approved