login
A022576
Expansion of Product_{m>=1} (1+x^m)^11.
2
1, 11, 66, 297, 1122, 3740, 11341, 31922, 84535, 212707, 512369, 1188353, 2666048, 5807296, 12319659, 25518757, 51725289, 102786959, 200568907, 384847199, 727019260, 1353654049, 2486522369, 4509972819, 8083287432, 14326409152, 25124415635, 43622744968, 75026666913, 127882738709
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (11/3)^(1/4) * exp(Pi * sqrt(11*n/3)) / (128 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^11, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^11)) \\ G. C. Greubel, Feb 26 2018
(Magma) Coefficients(&*[(1+x^m)^11:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
CROSSREFS
Column k=11 of A286335.
Cf. A000009.
Sequence in context: A243745 A325752 A221143 * A000460 A256583 A210392
KEYWORD
nonn
STATUS
approved