%I #22 Sep 08 2022 08:44:46
%S 1,11,66,297,1122,3740,11341,31922,84535,212707,512369,1188353,
%T 2666048,5807296,12319659,25518757,51725289,102786959,200568907,
%U 384847199,727019260,1353654049,2486522369,4509972819,8083287432,14326409152,25124415635,43622744968,75026666913,127882738709
%N Expansion of Product_{m>=1} (1+x^m)^11.
%H Seiichi Manyama, <a href="/A022576/b022576.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) ~ (11/3)^(1/4) * exp(Pi * sqrt(11*n/3)) / (128 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%F a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 03 2017
%t nmax=50; CoefficientList[Series[Product[(1+q^m)^11,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^11)) \\ _G. C. Greubel_, Feb 26 2018
%o (Magma) Coefficients(&*[(1+x^m)^11:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 26 2018
%Y Column k=11 of A286335.
%Y Cf. A000009.
%K nonn
%O 0,2
%A _N. J. A. Sloane_