login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020969
Expansion of 1/((1-7*x)*(1-8*x)*(1-12*x)).
1
1, 27, 493, 7611, 107293, 1432011, 18457741, 232505307, 2883927805, 35398400235, 431393410669, 5231599117563, 63232056214237, 762504498009099, 9180490786688077, 110414131486397979, 1326988747136473789
OFFSET
0,2
FORMULA
a(n) = 27*a(n-1) - 236*a(n-2) + 672*a(n-3), n>=3. - Vincenzo Librandi, Mar 15 2011
a(n) = 20*a(n-1) - 96*a(n-2) + 7^n for n>1, a(0)=1, a(1)=27. - Vincenzo Librandi, Mar 15 2011
a(n) = (7^(n+2) - 10*8^(n+1) + 3*12^(n+1))/5. - Bruno Berselli, Mar 15 2011
EXAMPLE
a(5) = (7^(5 + 2) - 10*8^(5 + 1) + 3*12^(5 + 1))/5 = (7^7 - 10*8^6 + 3*12 ^ 6)/5 = 7160055/5 = 1432011. - Indranil Ghosh, Feb 28 2017
MATHEMATICA
CoefficientList[Series[1/((1 - 7 x) (1 - 8 x) (1 - 12 x)), {x, 0, 16}], x] (* or *) LinearRecurrence[{27, -236, 672}, {1, 27, 493}, 17] (* or *) Table[(7^(n + 2) - 10 8^(n + 1) + 3 12^(n + 1))/5, {n, 0, 16}] (* Indranil Ghosh, Feb 28 2017 *)
PROG
(PARI) a(n) = (7^(n+2)-10*8^(n+1)+3*12^(n+1))/5; \\ Indranil Ghosh, Feb 28 2017
(Python) def A020969(n): return (7**(n+2)-10*8**(n+1)+3*12**(n+1))/5 # Indranil Ghosh, Feb 28 2017
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-7*x)*(1-8*x)*(1-12*x)))); // G. C. Greubel, May 31 2018
CROSSREFS
Sequence in context: A020971 A023772 A020726 * A025956 A020724 A021994
KEYWORD
nonn,easy
STATUS
approved