login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020968
Expansion of 1/((1-7*x)*(1-8*x)*(1-11*x)).
1
1, 26, 455, 6700, 89661, 1130766, 13712035, 161844800, 1874156921, 21406992706, 242089527615, 2717862993300, 30349359729781, 337562780465846, 3743627395703195, 41428143398876200, 457728746687336241
OFFSET
0,2
FORMULA
a(n) = 26*a(n-1) - 221*a(n-2) + 616*a(n-3) for n>=3. - Vincenzo Librandi, Mar 15 2011
a(n) = 19*a(n-1) - 88*a(n-2) + 7^n for n>1, a(0)=1, a(1)=26. - Vincenzo Librandi, Mar 15 2011
a(n) = (3*7^(n+2) - 4*8^(n+2) + 11^(n+2))/12. - Bruno Berselli, Mar 15 2011
MATHEMATICA
Table[(3 7^(n + 2) - 4 8^(n + 2) + 11^(n + 2))/12, {n, 0, 16}] (* or *) CoefficientList[Series[1/((1 - 7 x) (1 - 8 x) (1 - 11 x)), {x, 0, 16}], x] (* Indranil Ghosh, Feb 28 2017 *)
LinearRecurrence[{26, -221, 616}, {1, 26, 455}, 20] (* Harvey P. Dale, Dec 24 2020 *)
PROG
(PARI) a(n) = (3*7^(n+2)-4*8^(n+2)+11^(n+2))/12; \\ Indranil Ghosh, Feb 28 2017
(Python) def A020968(n): return (3*7**(n+2)-4*8**(n + 2)+11**(n+2))//12 # Indranil Ghosh, Feb 28 2017
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-7*x)*(1-8*x)*(1-11*x)))); // G. C. Greubel, May 31 2018
CROSSREFS
Sequence in context: A025979 A020970 A023953 * A025955 A022725 A020606
KEYWORD
nonn,easy
STATUS
approved