login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020726
Expansion of 1/((1-6*x)*(1-10*x)*(1-11*x)).
0
1, 27, 493, 7599, 106645, 1411431, 17955757, 222093423, 2690508229, 32080473975, 377794514461, 4405195463487, 50953884924853, 585473143132359, 6690087028209805, 76090252032830991, 861988540696279717
OFFSET
0,2
FORMULA
a(n) = 21*a(n-1) - 110*a(n-2) + 6^n for n>1, a(0)=1, a(1)=27. - Vincenzo Librandi, Mar 11 2011
a(n) = (4*11^(n+2) - 5*10^(n+2) + 6^(n+2))/20. - Yahia Kahloune, Jun 30 2013
In general, for the expansion of 1/((1-r*x)(1-s*x)(1-t*x)) with t > s > r, we have the formula: a(n) = ((s-r)*t^(n+2) - (t-r)*s^(n+2) + (t-s)*r^(n+2))/((s-r)*(t-r)*(t-s)). - Yahia Kahloune, Sep 09 2013
a(0) = 1, a(1) = 27, a(2) = 493, a(n) = 27*a(n-1) - 236*a(n-2) + 660*a(n-3). - Harvey P. Dale, Oct 01 2014
MATHEMATICA
CoefficientList[Series[1/((1-6x)(1-10x)(1-11x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{27, -236, 660}, {1, 27, 493}, 30] (* Harvey P. Dale, Oct 01 2014 *)
PROG
(PARI) Vec(1/((1-6*x)*(1-10*x)*(1-11*x)) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020
CROSSREFS
Sequence in context: A023946 A020971 A023772 * A020969 A025956 A020724
KEYWORD
nonn,easy
STATUS
approved