OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (27,-236,660).
FORMULA
a(n) = 21*a(n-1) - 110*a(n-2) + 6^n for n>1, a(0)=1, a(1)=27. - Vincenzo Librandi, Mar 11 2011
a(n) = (4*11^(n+2) - 5*10^(n+2) + 6^(n+2))/20. - Yahia Kahloune, Jun 30 2013
In general, for the expansion of 1/((1-r*x)(1-s*x)(1-t*x)) with t > s > r, we have the formula: a(n) = ((s-r)*t^(n+2) - (t-r)*s^(n+2) + (t-s)*r^(n+2))/((s-r)*(t-r)*(t-s)). - Yahia Kahloune, Sep 09 2013
a(0) = 1, a(1) = 27, a(2) = 493, a(n) = 27*a(n-1) - 236*a(n-2) + 660*a(n-3). - Harvey P. Dale, Oct 01 2014
MATHEMATICA
CoefficientList[Series[1/((1-6x)(1-10x)(1-11x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{27, -236, 660}, {1, 27, 493}, 30] (* Harvey P. Dale, Oct 01 2014 *)
PROG
(PARI) Vec(1/((1-6*x)*(1-10*x)*(1-11*x)) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved