login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-6*x)*(1-10*x)*(1-11*x)).
0

%I #34 Mar 10 2020 10:28:02

%S 1,27,493,7599,106645,1411431,17955757,222093423,2690508229,

%T 32080473975,377794514461,4405195463487,50953884924853,

%U 585473143132359,6690087028209805,76090252032830991,861988540696279717

%N Expansion of 1/((1-6*x)*(1-10*x)*(1-11*x)).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (27,-236,660).

%F a(n) = 21*a(n-1) - 110*a(n-2) + 6^n for n>1, a(0)=1, a(1)=27. - _Vincenzo Librandi_, Mar 11 2011

%F a(n) = (4*11^(n+2) - 5*10^(n+2) + 6^(n+2))/20. - _Yahia Kahloune_, Jun 30 2013

%F In general, for the expansion of 1/((1-r*x)(1-s*x)(1-t*x)) with t > s > r, we have the formula: a(n) = ((s-r)*t^(n+2) - (t-r)*s^(n+2) + (t-s)*r^(n+2))/((s-r)*(t-r)*(t-s)). - _Yahia Kahloune_, Sep 09 2013

%F a(0) = 1, a(1) = 27, a(2) = 493, a(n) = 27*a(n-1) - 236*a(n-2) + 660*a(n-3). - _Harvey P. Dale_, Oct 01 2014

%t CoefficientList[Series[1/((1-6x)(1-10x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{27,-236,660},{1,27,493},30] (* _Harvey P. Dale_, Oct 01 2014 *)

%o (PARI) Vec(1/((1-6*x)*(1-10*x)*(1-11*x)) + O(x^30)) \\ _Jinyuan Wang_, Mar 10 2020

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_