The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019810 Decimal expansion of sine of 1 degree. 59
 0, 1, 7, 4, 5, 2, 4, 0, 6, 4, 3, 7, 2, 8, 3, 5, 1, 2, 8, 1, 9, 4, 1, 8, 9, 7, 8, 5, 1, 6, 3, 1, 6, 1, 9, 2, 4, 7, 2, 2, 5, 2, 7, 2, 0, 3, 0, 7, 1, 3, 9, 6, 4, 2, 6, 8, 3, 6, 1, 2, 4, 2, 7, 6, 4, 0, 5, 9, 7, 3, 8, 4, 2, 0, 3, 9, 2, 8, 0, 7, 0, 0, 4, 2, 0, 0, 1, 9, 2, 6, 7, 9, 1, 0, 2, 1, 3, 4, 6, 9, 1, 4, 4, 8, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS An algebraic number of degree 48. - Charles R Greathouse IV, Apr 14 2014 This algebraic number has denominator 2, the least integer k > 0 such that k times the number is an algebraic integer. - Charles R Greathouse IV, Nov 12 2014 The Fifteenth Century Persian mathematician Jamshid Al-Kashi was the first to calculate the value of sine of one degree correct to ten sexagesimal places (17 decimal digits) in his Risala al-Watar wa'l Jaib. - Mohammad K. Azarian, Jan 14 2017 The minimal polynomial is 281474976710656 x^48 - 3377699720527872 x^46 + 18999560927969280 x^44 - 66568831992070144 x^42 + 162828875980603392 x^40 - 295364007592722432 x^38 + 411985976135516160 x^36 - 452180272956309504 x^34 + 396366279591591936 x^32 - 280058255978266624 x^30 + 160303703377575936 x^28 - 74448984852135936 x^26 + 28011510450094080 x^24 - 8500299631165440 x^22 + 2064791072931840 x^20 - 397107008634880 x^18 + 59570604933120 x^16 - 6832518856704 x^14 + 583456329728 x^12 - 35782471680 x^10 + 1497954816 x^8 - 39625728 x^6 + 579456 x^4 - 3456 x^2 + 1 (WolframAlpha). - Rick L. Shepherd, Apr 12 2017 REFERENCES Mohammad K. Azarian, Forty-Five Nested Equilateral Triangles and cosecant of 1 degree, Problem 813, College Mathematics Journal, Vol. 36, No. 5, November 2005, pp. 413-414. Solution published in Vol. 37, No. 5, November 2006, pp. 394-395. LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 Mohammad K. Azarian, A Study of Risa-la al-Watar wa'l Jaib ("The Treatise on the Chord and Sine"), Forum Geometricorum, Volume 15 (2015) 229-242. Mathematical Reviews, MR 3418854 (Reviewed), Zentralblatt MATH, Zbl 1328.01015. FORMULA Equals sin(Pi/180) = cos(89*Pi/180) = (i^(89/90) - i^(91/90))/2 (the last from WolframAlpha, rearranged). - Rick L. Shepherd, Apr 12 2017 EXAMPLE 0.01745240643728351281941897851631... MATHEMATICA Join[{0}, RealDigits[N[Sin[Pi/180], 200]][[1]]] (* and/or *) Join[{0}, RealDigits[N[Sin[1 Degree], 200]][[1]]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *) PROG (PARI) sin(Pi/180) (PARI) real((I^(89/90) - I^(91/90))/2) // (imaginary part is not exactly zero only because of finite precision) Rick L. Shepherd, Apr 12 2017 CROSSREFS Cf. A110937, A280188. Sequence in context: A210463 A154172 A021577 * A011475 A180078 A019685 Adjacent sequences:  A019807 A019808 A019809 * A019811 A019812 A019813 KEYWORD nonn,cons,easy AUTHOR EXTENSIONS More terms from James A. Sellers, Jan 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 01:05 EST 2020. Contains 331178 sequences. (Running on oeis4.)