login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of sine of 1 degree.
66

%I #45 Jul 10 2024 20:12:12

%S 0,1,7,4,5,2,4,0,6,4,3,7,2,8,3,5,1,2,8,1,9,4,1,8,9,7,8,5,1,6,3,1,6,1,

%T 9,2,4,7,2,2,5,2,7,2,0,3,0,7,1,3,9,6,4,2,6,8,3,6,1,2,4,2,7,6,4,0,5,9,

%U 7,3,8,4,2,0,3,9,2,8,0,7,0,0,4,2,0,0,1,9,2,6,7,9,1,0,2,1,3,4,6,9,1,4,4,8,8

%N Decimal expansion of sine of 1 degree.

%C An algebraic number of degree 48. - _Charles R Greathouse IV_, Apr 14 2014

%C This algebraic number has denominator 2, the least integer k > 0 such that k times the number is an algebraic integer. - _Charles R Greathouse IV_, Nov 12 2014

%C The Fifteenth Century Persian mathematician Jamshid Al-Kashi was the first to calculate the value of sine of one degree correct to ten sexagesimal places (17 decimal digits) in his Risala al-Watar wa'l Jaib. - _Mohammad K. Azarian_, Jan 14 2017

%C The minimal polynomial is 281474976710656 x^48 - 3377699720527872 x^46 + 18999560927969280 x^44 - 66568831992070144 x^42 + 162828875980603392 x^40 - 295364007592722432 x^38 + 411985976135516160 x^36 - 452180272956309504 x^34 + 396366279591591936 x^32 - 280058255978266624 x^30 + 160303703377575936 x^28 - 74448984852135936 x^26 + 28011510450094080 x^24 - 8500299631165440 x^22 + 2064791072931840 x^20 - 397107008634880 x^18 + 59570604933120 x^16 - 6832518856704 x^14 + 583456329728 x^12 - 35782471680 x^10 + 1497954816 x^8 - 39625728 x^6 + 579456 x^4 - 3456 x^2 + 1 (WolframAlpha). - _Rick L. Shepherd_, Apr 12 2017

%D Mohammad K. Azarian, Forty-Five Nested Equilateral Triangles and cosecant of 1 degree, Problem 813, College Mathematics Journal, Vol. 36, No. 5, November 2005, pp. 413-414. Solution published in Vol. 37, No. 5, November 2006, pp. 394-395.

%H Ivan Panchenko, <a href="/A019810/b019810.txt">Table of n, a(n) for n = 0..1000</a>

%H Mohammad K. Azarian, <a href="http://forumgeom.fau.edu/FG2015volume15/FG201523.pdf">A Study of Risa-la al-Watar wa'l Jaib ("The Treatise on the Chord and Sine")</a>, Forum Geometricorum, Volume 15 (2015) 229-242. Mathematical Reviews, MR 3418854 (Reviewed), Zentralblatt MATH, Zbl 1328.01015.

%H <a href="/index/Al#algebraic_48">Index entries for algebraic numbers, degree 48</a>

%F Equals sin(Pi/180) = cos(89*Pi/180) = (i^(89/90) - i^(91/90))/2 (the last from WolframAlpha, rearranged). - _Rick L. Shepherd_, Apr 12 2017

%e 0.01745240643728351281941897851631...

%t Join[{0},RealDigits[N[Sin[Pi/180],200]][[1]]] (* and/or *)

%t Join[{0},RealDigits[N[Sin[1 Degree],200]][[1]]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 21 2011 *)

%o (PARI) sin(Pi/180)

%o (PARI) real((I^(89/90) - I^(91/90))/2) \\ (imaginary part is not exactly zero only because of finite precision) _Rick L. Shepherd_, Apr 12 2017

%Y Cf. A110937, A280188.

%K nonn,cons,easy

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Jan 19 2000