login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371802
Decimal expansion of Sum_{k>=0} (-1)^k / (k^2 + 3).
2
1, 7, 4, 5, 2, 6, 7, 6, 9, 6, 3, 3, 8, 3, 9, 0, 2, 5, 4, 6, 1, 0, 2, 6, 2, 3, 5, 9, 8, 9, 4, 3, 3, 8, 4, 4, 8, 1, 6, 2, 8, 0, 3, 1, 8, 5, 3, 2, 8, 6, 5, 0, 0, 7, 2, 6, 6, 9, 4, 9, 0, 1, 5, 4, 5, 6, 3, 3, 3, 2, 9, 4, 0, 1, 6, 2, 1, 7, 6, 9, 5, 0, 8, 6, 7, 8
OFFSET
0,2
COMMENTS
In general, for m > 0, Sum_{k>=0} (-1)^k / (k^2 + m) = 1/(2*m) + Pi * exp(sqrt(m)*Pi) / ((exp(2*sqrt(m)*Pi) - 1) * sqrt(m)). - Vaclav Kotesovec, Apr 22 2024
FORMULA
Equals (1/6)*(1 + sqrt(3)*Pi*csch(Pi*sqrt(3)).
EXAMPLE
0.17452676963383902546102623598943384481...
MATHEMATICA
s = Re[N[Sum[(-1)^k/(k^2 + 3), {k, 0, Infinity}], 120]]
First[RealDigits[s]]
PROG
(PARI) sumalt(k=0, (-1)^k / (k^2 + 3)) \\ Hugo Pfoertner, Apr 22 2024
CROSSREFS
Cf. A329084.
Sequence in context: A154172 A021577 A019810 * A011475 A180078 A019685
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 17 2024
STATUS
approved