login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015664
Expansion of e.g.f. theta_3^(1/2).
2
1, 1, -1, 3, 9, -15, 135, -2205, 21105, 76545, 694575, -6392925, -56600775, 66891825, -19964169225, 741313447875, 5375639894625, 44667168170625, -2328500019470625, 5663134786183875, -466442955127524375, 11513119609487120625
OFFSET
0,4
COMMENTS
The sequence shows the coefficients of sqrt(theta_3) regarded as an exponential generating function.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
LINKS
FORMULA
E.g.f. appears to equal exp( Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 + x^(2*n+1))) ). - Peter Bala, Dec 23 2021
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A186690(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Jul 07 2023
EXAMPLE
sqrt(theta_3) = 1 + q - (1/2)*q^2 + (1/2)*q^3 + (3/8)*q^4 - (1/8)*q^5 + (3/16)*q^6 - (7/16)*q^7 + (67/128)*q^8 + (27/128)*q^9 + ...
MAPLE
# get basic theta series in maple
maxd:=201:
# get th2, th3, th4 = Jacobi theta constants out to degree maxd
temp0:=trunc(evalf(sqrt(maxd)))+2:
a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od:
th2:=series(a, q, maxd); # A098108
a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od:
th3:=series(a, q, maxd); # A000122
th4:=series(subs(q=-q, th3), q, maxd); # A002448
series(sqrt(th3), q, maxd); # this sequence
MATHEMATICA
nmax = 25; CoefficientList[Series[EllipticTheta[3, 0, x]^(1/2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 23 2018 *)
KEYWORD
sign
EXTENSIONS
Entry revised by N. J. A. Sloane, Oct 22 2018
STATUS
approved