login
A015346
Gaussian binomial coefficient [ n,7 ] for q = -7.
2
1, -720600, 605808540100, -497459062806004200, 409849628721453245181802, -337508711324786004755672161800, 277955299234477922983349122651265300, -228907863042160417649553303166468327692600
OFFSET
7,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
MATHEMATICA
Table[QBinomial[n, 7, -7], {n, 7, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
PROG
(Sage) [gaussian_binomial(n, 7, -7) for n in range(7, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
CROSSREFS
Sequence in context: A252887 A204403 A250372 * A190932 A153580 A153581
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved