|
|
A015349
|
|
Gaussian binomial coefficient [ n,7 ] for q = -9.
|
|
2
|
|
|
1, -4304672, 20846476694116, -99571465386311288480, 476319830905927777714449130, -2278184404047301621409794099651808, 10896505884544222754038383150470776581556, -52117638957586712017437457380440909324731738208
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
7,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 7, -9) for n in range(7, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|